• Title/Summary/Keyword: Soil Prediction Model

Search Result 525, Processing Time 0.02 seconds

Estimation of ultimate bearing capacity of shallow foundations resting on cohesionless soils using a new hybrid M5'-GP model

  • Khorrami, Rouhollah;Derakhshani, Ali
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.127-139
    • /
    • 2019
  • Available methods to determine the ultimate bearing capacity of shallow foundations may not be accurate enough owing to the complicated failure mechanism and diversity of the underlying soils. Accordingly, applying new methods of artificial intelligence can improve the prediction of the ultimate bearing capacity. The M5' model tree and the genetic programming are two robust artificial intelligence methods used for prediction purposes. The model tree is able to categorize the data and present linear models while genetic programming can give nonlinear models. In this study, a combination of these methods, called the M5'-GP approach, is employed to predict the ultimate bearing capacity of the shallow foundations, so that the advantages of both methods are exploited, simultaneously. Factors governing the bearing capacity of the shallow foundations, including width of the foundation (B), embedment depth of the foundation (D), length of the foundation (L), effective unit weight of the soil (${\gamma}$) and internal friction angle of the soil (${\varphi}$) are considered for modeling. To develop the new model, experimental data of large and small-scale tests were collected from the literature. Evaluation of the new model by statistical indices reveals its better performance in contrast to both traditional and recent approaches. Moreover, sensitivity analysis of the proposed model indicates the significance of various predictors. Additionally, it is inferred that the new model compares favorably with different models presented by various researchers based on a comprehensive ranking system.

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang;Chunfeng Zhao;Cheng Zhao;Yue Wu;Xin Gong
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.97-107
    • /
    • 2024
  • The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part I. Model Description (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: I. 모형설명)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2008
  • The surface runoff is one of the important components for the surface water balance. However, most Land Surface Models(LSMs), coupled to climate models at a large scale for the prediction and prevention of disasters caused by climate changes, simplistically estimate surface runoff from the soil water budget. Ignoring the role of surface flow depth on the infiltration rate causes errors in both surface and subsurface flow calculations. Therefore, for the comprehensive terrestrial water and energy cycle predictions in LSMs, a conjunctive surface-subsurface flow model at a large scale is developed by coupling a 1-D diffusion wave model for surface flow with the 3-D Volume Averaged Soil-moisture Transport(VAST) model for subsurface flow. This paper describes the new conjunctive surface-subsurface flow formulation developed for improvement of the prediction of surface runoff and spatial distribution of soil water by topography, along with basic schemes related to the terrestrial hydrologic system in Common Land Model(CLM), one of the state-of-the-art LSMs.

Nonlinear Analysis for the Prediction of Lateral Behavior of Single Piles in Non-homogeneous Sandy Soil (비균질 사질토 지반에서 단일말뚝의 수평거동 예측을 위한 비선형 해석기법)

  • 김영수;김병탁;허노영
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.5-16
    • /
    • 2000
  • THe purpose of this paper is to suggest the analytical method which can predict lateral nonlinear behavior in non-homogeneous soil using the coefficient of soil resistance and ultimate soil resistance. Those parameters are obtained through back analysis on the base of the results of a series of model tests.Analytical method of Chang is more or less difficult to predict nonlinear behavior in non-homogeneous sol. So, in this study, for the prediction of nonlinear behavior the compositive analytical method which apply the p - y curve to Chang model is suggested. Also, the program is developed to predict nonlinear behavior using the compositive analytical method and it can be used to calculated the deflection, bending moment and soil reaction with DFM in non-homogeneous soil. To establish applicability of the suggested analytical method, the results of model tests and field tests and Pentagon2D finite element program are compared with those of the compositive analytical method. In the analysis values of the coefficient of soil reaction and ultimate soil resistance are also applied to the case of non-homogeneous soil. Lateral defection calculated using the compositive analytical method has been found to be in good agreement with values measured in field and model load tests.

  • PDF

Development of a soil total carbon prediction model using a multiple regression analysis method

  • Jun-Hyuk, Yoo;Jwa-Kyoung, Sung;Deogratius, Luyima;Taek-Keun, Oh;Jaesung, Cho
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.891-897
    • /
    • 2021
  • There is a need for a technology that can quickly and accurately analyze soil carbon contents. Existing soil carbon analysis methods are cumbersome in terms of professional manpower requirements, time, and cost. It is against this background that the present study leverages the soil physical properties of color and water content levels to develop a model capable of predicting the carbon content of soil sample. To predict the total carbon content of soil, the RGB values, water content of the soil, and lux levels were analyzed and used as statistical data. However, when R, G, and B with high correlations were all included in a multiple regression analysis as independent variables, a high level of multicollinearity was noted and G was thus excluded from the model. The estimates showed that the estimation coefficients for all independent variables were statistically significant at a significance level of 1%. The elastic values of R and B for the soil carbon content, which are of major interest in this study, were -2.90 and 1.47, respectively, showing that a 1% increase in the R value was correlated with a 2.90% decrease in the carbon content, whereas a 1% increase in the B value tallied with a 1.47% increase in the carbon content. Coefficient of determination (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) methods were used for regression verification, and calibration samples showed higher accuracy than the validation samples in terms of R2 and MAPE.

Application of RUSLE and MUSLE for Prediction of Soil Loss in Small Mountainous Basin (산지소유역의 토사유실량 예측을 위한 RUSLE와 MUSLE 모형의 적용성 평가)

  • Jung, Yu-Gyeong;Lee, Sang-Won;Lee, Ki-Hwan;Park, Ki-Young;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.98-104
    • /
    • 2014
  • This study aims to predict the amount of soil loss from Mt. Palgong's small basin, by using influence factors derived from related models, including RUSLE and MUSLE models, and verify the validity of the model through a comparative analysis of the predicted values and measured values, and the results are as follows: The amount of soil loss were greatly affected by LS factor. In comparison with the measured value of the amount of total soil loss, the predicted values by the two models (RUSLE and MUSLE), appeared to be higher than those of the measured soil loss. Predicted values by RUSLE were closer to values of measured soil loss than those of MUSLE. However, coefficient of variation of MUSLE were lower, but two model's coefficient of variation in similar partial patterns in the prediction of soil loss. RUSLE and MUSLE, prediction soil loss models, proved to be appropriate for use in small mountainous basin. To improve accuracy of prediction of soil loss models, more effort should be directed to collect more data on rainfall-runoff interaction and continuous studies to find more detailed influence factors to be used in soil loss model such as RUSLE and MUSLE.

A Preliminary Study of Enhanced Predictability of Non-Parametric Geostatistical Simulation through History Matching Technique (히스토리매칭 기법을 이용한 비모수 지구통계 모사 예측성능 향상 예비연구)

  • Jeong, Jina;Paudyal, Pradeep;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.56-67
    • /
    • 2012
  • In the present study, an enhanced subsurface prediction algorithm based on a non-parametric geostatistical model and a history matching technique through Gibbs sampler is developed and the iterative prediction improvement procedure is proposed. The developed model is applied to a simple two-dimensional synthetic case where domain is composed of three different hydrogeologic media with $500m{\times}40m$ scale. In the application, it is assumed that there are 4 independent pumping tests performed at different vertical interval and the history curves are acquired through numerical modeling. With two hypothetical borehole information and pumping test data, the proposed prediction model is applied iteratively and continuous improvements of the predictions with reduced uncertainties of the media distribution are observed. From the results and the qualitative/quantitative analysis, it is concluded that the proposed model is good for the subsurface prediction improvements where the history data is available as a supportive information. Once the proposed model be a matured technique, it is believed that the model can be applied to many groundwater, geothermal, gas and oil problems with conventional fluid flow simulators. However, the overall development is still in its preliminary step and further considerations needs to be incorporated to be a viable and practical prediction technique including multi-dimensional verifications, global optimization, etc. which have not been resolved in the present study.

A Prediction Model of Resilient Modulus for Recycled Crushed-Rock-Soil-Mixture (재활용 암버력 - 토사의 회복탄성계수 예측 모델)

  • Park, In-Beom;Mok, Young-Jin
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.147-155
    • /
    • 2010
  • A prediction model of resilient modulus($E_R$) was developed for recycled crushed-rock-soil mixtures. The evaluation of $E_R$, using the "orthodox" repeated loading tri-axial test, is not feasible for such a large-size gravelly material. An alternative method was proposed hereby using the subtle different modulus called nonlinear dynamic modulus. The prediction model was developed by utilizing in-situ measured shear modulus($G_{max}$) and its reduction curves of modeled materials using the large free-free resonant column test. A pilot evaluation of the model parameters was carried out for recycled crushed-rock-soil-mixture at a highway construction site near Gimcheon, Korea. The values of the model parameters($A_E,\;n_E,\;{\varepsilon}_r\;and\;{\alpha}$) were proposed as 9618, 0.47, 0.0135, and 0.8, respectively.

Probabilistic Evaluation on Prediction of the Strains by Single Surface Constitutive Model (확률론에 의한 Single Surface 구성모델의 변형률 예측능력 평가)

  • Jeong, Jin Seob;Song, Young Sun;Kim, Chan Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.163-172
    • /
    • 1993
  • A probabilistic approach for evaluation of prediction of the strains using Lade's single surface constitutive model was employed, based on first-order approximate mean and variance. Several experiments such as isotropic compression and drained triaxial compression tests were conducted to examine the variabilities of soil parameters for Lade's model. By taking into account the results of the experimental data such as mean values and standard deviations of soil parameter's, a new probabilistic approach, which explains the uncertainty of computed strains, is applied. The magnitude of the COV for each parameter and the correlation coefficient between the two parameters can be effectively used for reducing the number of the parameters for the model. It is concluded that Lade's single surface constitutive model is surperior model for the prediction of the strain, because the COV of strains is under the "0.51".

  • PDF

Effect of Soil Thermal Conductivity and Moisture Content on Design Length of Horizontal Ground Heat Exchanger (토양 열전도도와 수분함량이 수평형 지중열교환기 설계 길이에 미치는 영향)

  • Sohn, Byong-Hu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.21-31
    • /
    • 2012
  • This paper reviewed and evaluated some of the commonly used prediction models for thermal conductivity of soils with the experimental data. Semi-theoretical models for two-component materials were found inappropriate to estimate the thermal conductivity of dry state soils. It came out that the model developed by Cote and Konrad gave the best overall prediction results for unsaturated soils available in the literature. However, it still needs to be improved to cover a wider range of soil types and degrees of saturation. In the present study, parametric analysis is also conducted to investigate the effect of soil type and moisture content on the horizontal ground heat exchanger design. The analysis shows that horizontal ground heat exchanger pipe length is reduced with the increase of soil thermal conductivity and water content. The calculation results also show that horizontal ground heat exchanger size can be reduced to a certain extent by using backfilling material with a higher thermal conductivity of solid particles.