• Title/Summary/Keyword: Soil Moisture Content

Search Result 949, Processing Time 0.032 seconds

Effect of Seed-Fertilizer Distance with Soil Moisture and Fertilizer Application Levels on the Emergence and Initial Growth of Barley (토양수분(土壤水分) 및 시비량(施肥量)에 따른 종자(種子)와 비료(肥料)의 수직거리(垂直距離)가 보리 출아(出芽) 및 초기생육(初期生育)에 미치는 영향(影響))

  • Park, Moo-Eon;Kim, Seok-Dong;Ha, Yong-Woong;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.274-282
    • /
    • 1984
  • In order to study the effect of seed-fertilizer vertical distance with soil moisture and fertilizer levels on the emergence and initial growth, barley cv. Olbori was seeded in the pots filled with sandy loam or loamy sand soils which were adjusted to 80-100% (higher soil moisture) or 50-60% (lower soil moisture) of soil moisture retention percent at 1/10 atmosphere tension. Prior to seeding of barley seed-fertilizer distance was appropriately controlled by adding soils after dressing fertilizer at three levels-normal application ($N:P_2O_5:K_2O=6-9-7kg/10a$), 50% increase of normal dose and double application. In addition, germination experiment was conducted in the various concentrations of fertilizer solutions under room temperature. The results are summarized as follows; 1. Seed-fertilizer vertical distance must be more than three centimeters to avoid from the decrease and retardation of emergence and poor initial growth of bareley by fertilizer application. 2. Emergence of barley more decreased and retarded in sandy soils than loamy soils and was decelerated with increase of application rate in fertilizer and decrease of soil moisture content. 3. Germination rate remarkably decrease from 0.4 percent of nitrogen solution and 0.5 percent of potassium solution and reached zero at 2.3 and 2.4 percent of nitrogen and potassium solutions, respectively. 4. Germination of seeds affected by concentrated fertilizer solutions was remarkably recovered with dilution degree of fertilizer solution.

  • PDF

Effect of Application of Swine Slurry on Productivity of Sorghum × Sorghum Hybrid and Soil Environment in Reclaimed Land (간척지에서 돈분액비 시용이 수수 × 수수 교잡종의 생산성 및 토양환경에 미치는 영향)

  • Choi, Ki-Choon;Jung, Min-Woong;Cho, Nam-Chul;Park, Hyung-Soo;Yoon, Sei-Hyung;Kim, Jong-Geun;Song, Chae-Eun;Choi, Eun-Min;Kim, Cheon-Man;Lim, Young-Chul
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.2
    • /
    • pp.159-166
    • /
    • 2011
  • This experiment was carried out to investigate the effect of application of swine slurry (SS) and slurry composting-biofilteration liquid fertilizer (SCB) on productivity of sorghum${\times}$sorghum hybrid (SSH) and soil environment in reclaimed land of Sukmoon in Korea. Dry matter (DM) yields of SSH in the treatments of SS and chemical fertilizer (CF) were higher than those of in SCB treatment in reclaimed land, but DM yields in SS and CF did not show a significant difference as compared to SCB. Nutritive values of SSH were not different among CF, SS and SCB. In soil samples collected at the end of the experiment, the concentration of organic matter was significantly increased by SS and SCB as compare to that at the beginning of the experiment (P<0.05), whereas the concentration of total nitrogen was not affected by SS and SCB. To investigate the moisture content of soil, the soils were collected from three layers; surface (0~5 cm), intermediate (10~15 cm), and deep (20~25 cm) layer. The moisture contents of soils increased according to the soil depth and the soil moisture was immediately affected by the amount of rainfall. Therefore, we suggest that the cultivation of SSH using SS in reclaimed land is possible and that additional nitrogen fertilizer was surely applied in case of application of SCB to cultivate SSH.

Utilization of carrageenan as an alternative eco-biopolymer for improving the strength of liquefiable soil

  • Regina A. Zulfikar;Hideaki Yasuhara;Naoki Kinoshita;Heriansyah Putra
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.221-230
    • /
    • 2023
  • The liquefaction of soil occurs when a soil loses strength and stiffness because of applied stress, such as an earthquake or other changes in stress conditions that result in a loss of cohesion. Hence, a method for improving the strength of liquefiable soil needs to be developed. Many techniques have been presented for their possible applications to mitigate liquefiable soil. Recently, alternative methods using biopolymers (such as xanthan gum, guar gum, and gellan gum), nontraditional additives, have been introduced to stabilize fine-grained soils. However, no studies have been done on the use of carrageenan as a biopolymer for soil improvement. Due to of its rheological and chemical structure, carrageenan may have the potential for use as a biopolymer for soil improvement. This research aims to investigate the effect of adding carrageenan on the soil strength of treated liquefiable soil. The biopolymers used for comparison are carrageenan (as a novel biopolymer), xanthan gum, and guar gum. Then, sand samples were made in cylindrical molds (5 cm × 10 cm) by the dry mixing method. The amount of each biopolymer was 1%, 3%, and 5% of the total sample volume with a moisture content of 20%, and the samples were cured for seven days. In terms of observing the effect of temperature on the carrageenan-treated soil, several samples were prepared with dry sand that was heated in an oven at various temperatures (i.e., 20℃ to 75℃) before mixing. The samples were tested with the direct shear test, UCS test, and SEM test. It can increase the cohesion value of liquefiable soil by 22% to 60% compared to untreated soil. It also made the characteristics of the liquefiable increase by 60% to 92% from very loose sandy soil (i.e., ϕ=29°) to very dense sandy soil. Carrageenan was also shown to have a significant effect on the compressive strength and to exceed the liquefaction limit. Based on the results, carrageenan was found to have the potential for use as an alternative biopolymer.

Evaluation of CO2 Emission to Changes of Soil Water Content, Soil Temperature and Mineral N with Different Soil Texture in Pepper Cultivation (고추재배에서 토성별 토양수분, 토양온도, 무기태질소 변화에 따른 CO2 배출량 평가)

  • Kim, Gun-Yeob;Song, Beom-Heon;Hong, Suk-Young;Ko, Byong-Gu;Roh, Kee-An;Shim, Kyo-Moon;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.393-398
    • /
    • 2008
  • Several researchers have proposed models or equations to predict soil $CO_2$ flux from more readily available biotic and abiotic measurement. Tree commonly used abiotic variables were N mineral and soil temperature and soil water content. This study was conducted to determine $CO_2$ emission to mineral N, soil water content and soil temperature with clay loam and sandy loam in pepper cultivation in 2004~2005. $CO_2$ flux in the upland with different levels of soil water potential was measured at least once in two weeks during the cropping period in the pepper cultivation plots. Soil water potential in the clay loam and sandy loam soils was established at -30kPa and -50kPa by measuring the soil gravimetric water content with two replications. $CO_2$ emission rate from the differently managed plots was highly correlation coefficient to between the mineral N ($R=0.830^{**}$, $0.876^{**}$) and soil temperature ($r^2=0.793^{**}$, $0.804^{**}$) in the clay loam and sandy loam, respectively. However, the relationships between $CO_2$ emission and soil water content were non-significant. $CO_2$ emissions at sandy loam soils was lower to 21~37% than at clay loam soils for both soil water conditions without differences in yield. At difference levels of soil water conditions, $CO_2$ emission at -50kPa decreased to 37.5% in comparison with that at -30kPa. From the path analysis as to contribution factors of GHGs, it appeared that contribution rate was in the order of soil temperature (54.9%), mineral N (32.7%), and soil moisture content (12.4%).

Water Use Efficiency of Barley, Wheat and Millet Affected by Groundwater Table under Lysimeter (라이시미터에서 지하수위에 따른 보리, 밀, 조의 수분이용효율 특성)

  • Kim, Beom-Ki;Gong, Hyo-Young;Shim, Jae-Sig;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.253-259
    • /
    • 2010
  • This experiment was conducted to evaluate water use efficiency of barley, wheat, and millet as a substitution crop for rice of fallow paddy field. Dry weight (DW), evapotranspiration, and transpiration of crop grown on the lysimeters controlled with 5 levels of groundwater table (GWT), 0, 25, 50, 75, and 100 cm were evaluated for optimum GWT and water use efficiency. All the lysimeters randomized with four replication arrangements were filled up sandy loam and were adjusted to the constant bulk density treated with twice water infiltration from bottom side to upper side of lysimeter. DW of barley, wheat, and millet in the plot of 0cm GWT that is saturated soil showed 34.9%, 44.7%, and 37.1% of that in the plot of 100 cm GWT, respectively showing a serious obstacle in crop growth. Evapotranspiration ratios calculated by evapotranspiration volume (mL) per DW were 166~605 mL for barley, 136~481 mL for wheat, and 81~418 mL for millet showing the order of barley > wheat > millet. Evapotranspiration ratio was increased with decrease of groundwater table that is the condition of moisture saturation. Estimation of GWT for maximum DW of wheat was 76 cm, and those of barley and millet were 100 cm below. The volumetric moisture content of lysimeter soil with cropping was markedly decreased as increase of crop growth because moisture supplying capability by capillary rise of water was less than amount of moisture required by crop.

Optimum Irrigation Point to Produce High Quality Cut Flowers of Gypsophila paniculata 'Bristol Fairy' (브리스톨 훼어리 안개초 고품질 절화 생산을 위한 적정 관수 개시점)

  • Cheong, Dong Chun;Jeong, Jong Seong;Park, Hak Bong
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.579-584
    • /
    • 2001
  • This experiment was conducted to investigate the effect of soil moisture content on cut flower quality of Gypsophila paniculata L. 'Bristol Fairy' in spring and autumn cultivations. The soil moisture potential (SMP) set point for irrigation was either -3.2 or -10.0kPa in the vegetative growth stage, and -10.0, -31.6, or -79.4kPa after the budding stage. When soil moisture reached at each set SMP point, 10 mm water was drip-irrigated. Tendency of flowering was earlier as SMP set point was lower in both vegetative growth and after budding stages. No other flower characteristics were found among other treatments. In both spring and autumn cultivations, as SMP set point was lower, the low primary branch length and upper internode length were decreased, the stem firmness was increased, and curvature of cut flower stem was decreased. Especially, in autumn, the higher the SMP set point, the higher the low primary branch than the apex, thus the paniculate inflorescence was deeply destroyed. Yield in spring cultivation was not significantly different among treatments, while that in autumn cultivation increased as the lower the SMP value. It is thought that optimal imgation points during vegetative growth and after budding stages to produce high quality cut flowers are -10.0 and -79.4kPa, respectively.

  • PDF

Assessment of soil moisture-vegetation-carbon flux relationship for agricultural drought using optical multispectral sensor (다중분광광학센서를 활용한 농업가뭄의 토양수분-식생-이산화탄소 플럭스 관계 분석)

  • Sur, Chanyang;Nam, Won-Hob
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.721-728
    • /
    • 2023
  • Agricultural drought is triggered by a depletion of moisture content in the soil, which hinders photosynthesis and thus increases carbon dioxide (CO2) concentrations in the atmosphere. The aim of this study is to analyze the relationship between soil moisture (SM) and vegetation activity toward quantifying CO2 concentration in the atmosphere. To this end, the MODerate resolution imaging spectroradiometer (MODIS), an optical multispectral sensor, was used to evaluate two regions in South Korea for validation. Vegetation activity was analyzed through MOD13A1 vegetation indices products, and MODIS gross primary productivity (GPP) product was used to calculate the CO2 flux based on its relationship with respiration. In the case of SM, it was calculated through the method of applying apparent thermal inertia (ATI) in combination with land surface temperature and albedo. To validate the SM and CO2 flux, flux tower data was used which are the observed measurement values for the extreme drought period of 2014 and 2015 in South Korea. These two variables were analyzed for temporal variation on flux tower data as daily time scale, and the relationship with vegetation index (VI) was synthesized and analyzed on a monthly scale. The highest correlation between SM and VI (correlation coefficient (r) = 0.82) was observed at a time lag of one month, and that between VI and CO2 (r = 0.81) at half month. This regional study suggests a potential capability of MODIS-based SM, VI, and CO2 flux, which can be applied to an assessment of the global view of the agricultural drought by using available satellite remote sensing products.

A Preliminary Study for Microwave Application to Energy Efficient Contaminated Soil Cleanup (마이크로파를 적용한 에너지 효율적인 오염토양 정화를 위한 예비연구)

  • Ham, Seok-Jin;Yang, In-Ho;Oh, Hyun-Sang;Cho, Hyeon-Jo;Kim, Gun-In;Jeong, Sang-Jo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.3
    • /
    • pp.28-37
    • /
    • 2011
  • A preliminary study for energy efficient soil heating and contaminant removal using microwave was conducted. Soils sampled from floodplain were heated with microwave oven, and soil heating property and energy efficiency were compared to those heated with electrical furnace. In addition the effects of water, soil organic matter, and contaminated diesel on soil heating with microwave were investigated. Even though the electrical power consumption of electrical furnace and microwave oven were similar, temperature of soil heated with microwave oven was significantly higher than that of soil heated with electrical furnace. The increase of soil moisture content delays the raise of soil temperature during heating it with microwave oven. However, the effects of total petroleum hydrocarbon (TPH) (<10%) in contaminated soil matrix and small amount of soil organic matter (<5%) on the increase of soil temperature by microwave were not significant. Further studies for contaminated soils with different texture using pilot scale microwave reactor are required for application of this technique in the field.

A Mechanical Properties According to the Compaction Degree on Weathered Granite Soil Using Lightweight Dynamic Cone Penetrometer (경량 동적콘관입시험기를 이용한 화강풍화토의 다짐도에 따른 역학특성)

  • Kim, Yeon-Il;Kim, Jin-Young;Shim, Jae-Rok;Choi, Jin;Kang, Kwon-Soo;Baek, Won-Jin;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2014
  • In this study, the applicability of the lightweight dynamic cone penetrometer in the domestic slope site was investigated using the weathered granite soil sampled form the Namwon slope site. And then, the lightweight dynamic cone penetration tests according to the change in the degree of compaction and water content were performed and it was analyzed with the correlations between the degree of compaction, the void ratio, the degree of saturation and the value of cone resistance. From the laboratory test results, the cone penetration resistance was rapidly increased in the dry side of the optimum moisture content, and it was largely decreased in the wet side of the optimum moisture content. Moreover, when the degree of compaction and the degree of saturation are large, the cone resistance is increased linearly. And a high correlativity was shown between water content, void ratio, the degree of saturation and the cone resistance. From these results, it is judged that the lightweight dynamic cone penetrometer can be applied to the investigation on the site slope.

Available Soil Water for Textural Class of Korean Soils (우리나라 토양(土壤)의 토성별(土性別) 유효수분(有效水分))

  • Jung, Sug-Jae;Moon, Joon;Kim, Tai-Soon;Hyeon, Geun-Soo;Park, Chang-Seo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.3
    • /
    • pp.167-172
    • /
    • 1990
  • Some of soil properties already known were selected for the determination of their effect on soil moisture characteristics. Total number of 2,808 representative samples from all over Korea with the exception of Jeju Island were investigated. 1. Available water contents were 4.7 for S, 7.7 for LS, 13.2 for SL, 17.7 for L, 19.2 for SiL, 15.9 for CL, 14.5 for SCL, 18.7 for SiCL, 17.3 for SiC, and 14.9% for C, respectively. 2. Simple regression analysis showed that field capacity and available water content were most strongly associated with sand content in coarse-textured soils, and with organic matter content in fine-textured soils, whereas permanent wilting point was closely associated with clay content. 3. Available water was strongly associated with silt content and also significantly with field capacity, but either not at all or negatively with permanent wilting point. 4. Prediction equations for available water and field capacity were drown out from known soil properties, which can be used for each textural class.

  • PDF