• Title/Summary/Keyword: Soil Moisture Content

Search Result 941, Processing Time 0.031 seconds

Experimental Investigations on Tensile Strength of Sand at Low Moisture Contents (저함수비 모래의 인장강도에 대한 실험적 연구)

  • Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.23-31
    • /
    • 2002
  • This study shows that tensile strength in moist sand clearly exists due to moisture and it is possible to simply and accurately measure the tensile strength of sands at low moisture contents. These measurements were made through the use of a newly developed direct tension apparatus and technique which are able to produce highly accurate results. The magnitudes of the tensile strengths of these moist and relatively clean sands are not equal to zero, as is widely assumed. Tensile strength increases with increasing moisture content and this trend is more noticeable at increasing relative densities. The influence of tensile strength in geotechnical problems was also examined by considering a simple rigid circular footing in sandy soil. It clearly shows that a small amount of tensile strength can significantly enhance the stability of a geotechnical system.

Analysis and Improvement of Soil Physical and Chemical Properties for Transplantation of Damaged Trees (훼손 수목의 이식을 위한 토양의 물리·화학적 특성 분석과 개선 방안)

  • Hyesu, Kim;Jungho, Kim;Yoonjung, Moon;Seonmi, Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.423-437
    • /
    • 2022
  • Parts of damaged trees are being transplanted in accordance with the Environmental Impact Assessment Manual. Problems such as death or poor growth are constantly being addressed in the process of transplanting trees from the forest they originally inhabited to temporary and final transplant sites. The purpose of this study is to analyze the differences in soil properties in the surrounding forest, the temporary transplant site, and the construction site and to suggest methods for improving the soil to make it suitable for the growth of transplanted trees. For 10 development projects, 2 soil samples were sampled from the surrounding forest, temporary transplant site, and construction site. A total of 60 soil samples were analyzed for physical and chemical properties. Among the physical properties such as coefficient of permeability, available moisture, and hardness, and chemical properties such as acidity, organic matter content, total nitrogen, and available P showed significant differences among groups. The soil of the construction site is harder than the surrounding forest because of construction equipments, the coefficient of permeability is higherthan the surrounding forest because of high sand content, and the available moisture was low. It does not retain the moisture necessary for plants in the soil and drains immediately. It is necessary to implement tillage to improve the physical properties and structure of the soil. In addition, it is necessary to cover the surface with wood chips or fallen leaves after adding mature organic matter to improve the physical and chemical properties of the soil together.

Effects of Layers of Non-woven Fabric on the Growth and Flowering of Edile Flower Tropaeolum majus L. in the Vertical Greening System for Lower Maintenance Urban Agriculture (저관리 도시농업을 위한 벽면녹화 부직포 처리가 식용꽃인 한련화(Tropaeolum majus L.)의 생육과 개화에 미치는 영향)

  • Park, Jae-Hyeon;Yoon, Young-Han;Lee, Jae-Man;Song, Hee-Yeon;Ju, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.6
    • /
    • pp.545-552
    • /
    • 2019
  • Tropaeolum majus, with a high decorative and food demand for vertical greening systems, has been utilized to revitalize urban agriculture. The effects of number of non-woven fabrics in a non-water environment and the adaptability of T. majus to this system were investigated. Planting ground composition of the container-type wall vertical greening system was made using non-woven fabric in one, two, three, or four layers. The results showed that the soil water content remained the highest when the non-woven fabric comprised 4 sheets. The morphological properties showed more growth with the 4 sheets than with 1, 2, and 3 sheets. In terms of physiological characteristics, chlorophyll content was mostly high in the 4 sheets, while shoot fresh weight value was in the order of 3 > 4 > 2 > 1 sheet, and root fresh weight value was in the order of 4 > 2 > 1 > 3 sheets. The dry weight of the measured values in the shoot was in the order of 4 > 3 > 2 > 1 sheet while no clear difference was found in the root of each treatment. The difference in the flowring characteristics was not different, but in evaluating the characteristics as a whole, the growth in the three layers of non-waven fabric was the best. In addition, the soil moisture contents and the growth characteristics were statistically significant as a positive correlation between the groups. Thus, greater the non-woven fabric, the higher is the adaptability of T. majus to dry stress under soil water-free conditions by maintaining soil moisture content. This showed that it represented an effective alternative as a method of vertical greening system for lower maintenance urban agriculture.

Effect of Coarse Materials on Compaction of Soil (조립재가 흙의 다짐에 미치는 영향)

  • 윤충섭;김호일;김현태
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.84-95
    • /
    • 1991
  • The compaction ratio of the field dry density to the maximum dry density is generally adopted as the index of quality control for embankment of earthfill structures such as Earth Dam, Sea Dike, River Bank and Road. In case of coarse materials are included in the earth material, the compaction ratio will be varied in wide range since the dry density is influenced by quantity of coarse material in the soil. The treatment for the coarse material should be controlled carefully in testing. In this study, the compaction characteristics of the soil contained the coarse materials were researched and calibration of the suitability of field quality control methods were carried out. 28 Samples were made of clay(CL) and sandy soil (SM) mixed with gravel whose content were 0, 4, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45, and 60% in Weight. The compaction characteristics depending on the coarse material content were analysed through 4 types of compaction tests which are A-1, B-i, C-i and D-1. The adjusting coefficients for density and moisture content namely a and ${\beta}$ respectively were proposed in order to consider the effects depending on content of the coarse materials. The test methods to control reasonably and promptly the quality of earthfill were proposed after analysing the ranges of possible errors on the relative compaction ratio between laboratory compaction methods and field density testing methods.

  • PDF

Immediate and long-term effects of lime and wheat straw on consistency characteristics of clayey soil

  • Muhammad, Gul;Marri, Amanullah
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.217-231
    • /
    • 2018
  • Clayey soils with swelling and shrinkage characteristics have been major causes for many problems in roads, buildings and other civil engineering infrastructure in various areas of Pakistan, particularly where there are several patches of such soils on either side of Indus River. As the consistency characteristics are directly related with the variation of moisture content; therefore, this study was explicitly focused to investigate the effect of lime and wheat straw on the consistency characteristics of clayey soils with relatively high swelling and shrinkage characteristics. The consistency test results indicate that by the increase in lime content there is a decrease in the plasticity index of soil; for instance, 10% lime content resulted to 59% decrease in the plasticity index value. On the other hand; the addition of wheat straw resulted in a significant increase in the plasticity index; for instance, 10% wheat straw content resulted to a 120% increase in the plasticity index. This study has further shown that the shrinkage and swelling of clayey soils which resulting to several problems in the civil engineering infrastructures may adequately be managed through mixing an appropriate amount of lime and wheat straw as soil stabilizing agent for both immediate and long-term effects.

The Relevance of Soil N2O Emissions Measured by a Closed Chamber Technique on the Physico-chemical Soil Parameters (Closed chamber를 이용한 토양 N2O 배출량과 주요 토양 인자들과의 상관성)

  • Kim Deug-Soo;Oh Jin Man
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.749-758
    • /
    • 2004
  • Nitrous oxide ($N_2$O) has been known as an important trace gas due to the greenhouse gas and the major source of stratospheric oxide of nitrogen (NO). Soil is the major source of $N_2$O in nature. The physicochemical characteristics of soils affect the emission of $N_2$O from soil. These physicochemical parameters are soil moisture, soil temperature, and soil N content. Since these parameters are correlated to the flux of $N_2$O from soil individually and compositely, there still remain many unknowns in the mechanism to produce $N_2$O in soil and the roles of such physicochemical parameters which affect the soil $N_2$O emission. Soil $N_2$O fluxes were measured at different levels in water filled pore space (WFPS), soil temperature and soil N contents from the same amounts of soils which were sampled from agriculturally managed upland field in a depth of ~30 cm at Kunsan. The soil $N_2$O flux measurements were conducted in a laboratory with a closed flux chamber system. The optimum soil moisture and soil temperature were observed at 60% of WFPS and ~13$^{\circ}C$. The soil $N_2$O flux increased as soil N contents increases during the whole experimental hours (up to 48 hours). However, average $N_2$O flux decreased after ~30 hours when organic carbon was mixed with nitrogen in the sample soils. It is suggested that organic carbon could be important for the emission of $N_2$O, and that the ratio of N to C needs to be identified in the process of $N_2$O soil emission.

Retention Ratio of Dredged Soil at Incheon Habour Route using Self-Weight Consolidation Test (인천지역 항로 준설토의 침강자중압밀시험에 의한 유보율 결정에 관한 연구)

  • Shin, Eun-Chul;Park, Young-Jin;Kang, Jeong-Ku
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.57-66
    • /
    • 2017
  • Self-weight consolidation test and soil property of dredged soil at Incheon habour route were analyzed to determine the initial dredging reclamation amount, reclamation depth, and estimating the required time of self-weight consolidation with calculation of the final planned height of dredging reclamation site. The moisture content, void ratio and ratio of volume change with elapsed time after throwing were estimated through Yano's empirical equation. As a result, there was a less variation in elements when fine-grained soil content was low as similarly to the behavior of coefficient of sedimentation-consolidation, Cs and the highest variation was shown at the fine-grained soil content of 50%. The retention ratio according to the fine grained soil content that could reinforce the comprehensive aspect of retention ratio for each particle size presented in the standard of estimate for reclamation construction work was calculated and presented using the calculated ratio of volume change.

Verification of Surface Scattering Models and Inversion Algorithms with Measurements of Polarimetric Backscattering Coefficients of a Bare Soil Surface (토양 표면에서의 편파별 후방 산란 계수 측정을 통한 산란 모델과 Inversion 알고리즘의 검증)

  • Hong, Jin-Young;Jung, Seung-Gun;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.12 s.115
    • /
    • pp.1172-1180
    • /
    • 2006
  • The backscattering coefficients of a bare soil surface were measured using an R-band polarimetric scatterometer, which were used to verify the validities of scattering models and inversion algorithms. The soil moisture contents and the surface roughness parameters (the RMS height and correlation length) were also measured from the soil surface. The backscattering coefficients were obtained from several scattering models with these surface parameters, and the computation results were compared with the measured backscattering coefficients. The soil moisture contents of the surface were retrieved from the measured backscattering coefficients, and compared with the measured surface parameters. This paper shows how well the scattering models agree with the measurements, and also shows the inversion results.

Study on the correlation links between parameters of weather conditions and indicators of seed productivity of plants of spring wheat (Tr. aestivum L.) in Irkutsk region

  • Takalandze, Gennady Ordenovich
    • Journal of Species Research
    • /
    • v.1 no.2
    • /
    • pp.257-261
    • /
    • 2012
  • In Irkutsk region the plants of spring wheat (Tr. aestivum) grow in three agro-ecological zones: steppe, forest-steppe and subtaiga. Due to this reason, the paper determines the coefficients of correlation between the indicators field germination of seeds, plant safety, productivity, temperature and moisture content of the plant habitat for each zone. The zonal moisture saving features of soil treatment for growing wheat plants (Tr. aestivum) are discussed on the basis of these data.

Earth Hummocks on the Crater Floor of Baegnokdam at Mt. Halla (한라산 백록담 화구저의 유상구조토)

  • 김태호
    • Journal of the Korean Geographical Society
    • /
    • v.36 no.3
    • /
    • pp.233-246
    • /
    • 2001
  • Topography and soil characteristics of earth hummocks are examined in the summit crater of Mt. Halla in order to evaluate their morphoclimatic significance as an indicator of a periglacial environment. The hummocks are generally oval in outline, and they have a diameter of 42 to 200 cm and a height of 9 to 27 cm Seventeen hummocks are distributed In a 5$\times$5 m quadrat at an interval of 20 to 40 cm Excavation reveals the cryoturbated soil profiles which consist of upper dark brown layer and lower brown layer. The dark brown layer has 61.8% total clay and silt content, implying Its high frost susceptibility Earth hummocks have the dry density of 0.761 to 1.009 g/㎤ the void ratio of 1420 to 2.008, and the moisture content of 24.2 to 68.8% by weight, respectively. The hummocky soils become compacted and desiccated downward. Earth hummocks are frozen as a hard solid mass during winter and early spring, and freezing fronts reach about 45 cm below their apices. The layer with high lute content appears in the upper horizon of dark brown soil. but Ice lenses are not so much segregated The moisture content of hummocky soils generally increases up to 73.9 to 118.80% for dark brown layer and 49.9 to 82.8% for brown layer during thins period Because the cohesive soil of earth hummocks indicates 72.8% of the moisture content as a liquid limit, the dark brown layer is highly fluid and consequently subject to cryoturbation processes.

  • PDF