• Title/Summary/Keyword: Soil Load

Search Result 1,418, Processing Time 0.028 seconds

Model Tests for Vertical Loads Acting on Embankment Piles (성토지지말뚝에 작용하는 연직하중에 대한 모형실험)

  • 홍원표;강승인
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.171-181
    • /
    • 2000
  • A series of model tests were performed both to investigate the load transfer by soil acrching in fills above embankment pils and to verify of the theoretical analysis. In the model tests, the piles were installed in a row below the embankment and the cap beams were placed on the pile heads perpendicular to the longitudinal axias of the embankment. The space between pile cap beams and the embankment height was focused as the major factors affecting the load transfer in embankment fill. When the embankment fill was higher than the minimum required height, which was about 33% higher than the radius of the soil arch proposed by theoretical discussion in the previous study, not only the soil arching could be developed completely but also the experimental results showed good agreement with theoretical predictions. The portion of the embankment load carried by model pile cap beams decreased with increment of the space between pile cap beams, while it increased with increment of the embankment height. Therefore, to maximize the effect of embankment load transfer by piles on design, the interval ratio of pile cap beams should be decreased under considerably high embankments by reducing the space between cap beams and/or enlarging the width of pile cap beams.

  • PDF

The Behavior and Capacity of Lateral Loaded Rigid Pile Characteristics in Multi-layered Soil Conditions (다층지반에 관입된 강성말뚝의 수평 거동 및 수평 지지력 특성)

  • Kyung, Doo-Hyun;Kang, Beong-Joon;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.77-90
    • /
    • 2009
  • In this study, experimental analysis was performed about lateral load capacity and behavior of laterally loaded-bored rigid piles in muti-layered soil conditions. Lateral pile load tests were performed for muti-layerd soils consisting of different relative density. Ultimated lateral load capacities were measured from lateral load-displacement curves and compared with estimated values using theoretical methods. Bending moments and unit lateral capacity distribution of surrounding piles were measured from attached strain gauges and earth pressure sensors on the pile. It was found that ultimated lateral load capacities were different from the muti-layered soil conditions, and measured values were lower than estimated values. The bending moment distributions of the pile were similar all the time. Unit lateral capacity distributions were a little different from muti-layered soil conditions, but basically similar to the distribution proposed by Prasad and Chari (1999).

Studies on the Development of Bearing Capacity Reinforcement for the Foundation of Soil (기초지반의 지지력보강공법에 관한 연구)

  • 유동환;최예환;유연택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.38-49
    • /
    • 1988
  • This paper presented as follows results of laboratory model tests with various shaped footings on soil bed reinforced with the strips on the base of behaviour of soil structure according to the loads and triaxial test results reinforced with geotextiles. Their parameters studied were the effects on the bearing capacity of a footing of the first layer of reinforcement, horizontal and vertical spacing of layers, number of layers, tensile strength of reinforcement and iclination load to the vertical 1.Depending on the strip arrangement, ultimate bearing capacity values could be more improved than urreinforced soil and the failure of soil was that the soil structure was transfered from the macrospace to microspase and its arrangement, from edge to edge to face to face. 2.The reinforcement was produced the reinforcing effects due to controlling the value of factor of one and permeable reinforcement was never a barrier of drainage condition. 3.Strength ratio was decreased as a linear shape according to increment of saturation degree of soil used even though at the lower strength ratio, the value of M-factor was rot influenced on the strength ratio but impermeable reinforcement decreased the strength of bearing capacity. 4.Ultimate bearing capacity under the plane-strain condition was appeared a little larger than triaxial or the other theoretical formulars and the circular footing more effective. 5.The maximum reinforcing effects were obtained at U I B=o.5, B / B=3 and N=3, when over that limit only acting as a anchor, and same strength of fabric appeared larger reinforcing effects compared to the thinner one. 6.As the LDR increased, more and more BCR occurred and there was appeared a block action below Z / B=O.5, but over the value, decrement of BCR was shown linear relation, and no effects above one. 7.The coefficient of the inclination was shown of minimum at the three layers of fabrics, but the value of H / B related to the ultimate load was decreased as increment of inclination degree, even though over the value of 4.5 there wasn't expected to the reinforcing effects As a consequence of the effects on load inclination, the degree of inclination of 15 per cent was decreased the bearing capacity of 70 per cent but irnproved the effects of 45 per cent through the insertion of geotextile.

  • PDF

Effects of Surface Cover and Soil Amendments on the NPS load Reduction from Alpine Fields (고랭지 밭의 비점오염부하 저감을 위한 지표피복재와 토양개량제의 효과)

  • Won, Chul-Hee;Shin, Min-Hwan;Lee, Su-In;Kum, Dong-Hyuk;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.47-53
    • /
    • 2014
  • We investigated the effect of straw mat cover and soil amendments on the reduction of runoff, non-point source pollution load and yield of a Chinese cabbage from alpine fields. Two plots on sandy loam soil were prepared. Experimental treatments were control and rice straw mat cover (3,300 kg/ha)+Polyacrylamide (PAM) (5 kg/ha)+Gypsum (1 ton/ha) (SPG). A variety of Chinese cabbage was cultivated and runoff was monitored during a growing season in 2012. Monitoring was conducted to seven times. Runoff rate of SPG plot was lower than those of control plot. The reduction rate of runoff from SPG plot was 29.4 % compared to control plot. The reduction rate of suspended solids (SS), total nitrogen (TN) and total phosphorus (TP) load of SPG plot was 86.5 %, 34.7 % and 39.1 %, respectively. Yield of a Chinese cabbage from SPG plot (39,646 kg/ha) was greater than that of control plots (28,482 kg/ha). It was concluded that the use of SPG on soil surface could not only reduce the NPS pollution loads in receiving waters but also help increase the crop yield.

Study on the Improvement of Rotary Blade - Tilling Load Characteristic Analysis of the Three Kinds of Rotary Blade - (로타리 경운날의 개량 연구 -경운날 3종의 경운부하특성 분석 -)

  • 김수성;이여성;우종구
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.391-400
    • /
    • 1997
  • Using the soil bin systems, this study was carried out to investigate the tilling load characteristic for the three kinds of Japanese rotary blade and the possibility of common use for power tiller and tractor rotary. The results obtained from the study are summarized as follows : 1. At all tested soils. the average and maximum tilling torque of all tested blades increased as the tillage pitch did. 2. The torque requirements of newly designed and produced blade was less than that of blade which has been used on power tiller and tractor rotary. 3. The maximum tilling torque of new ONE were decreased 7%, 10~11%, 27% in comparing with another blades at clay loam, loam and sandy loam, respectively. 4. According to observation of the extent of soil adhesion on blade and the contact aspect of blade, new ONE is the most excellent of all tested rotary blades and till smoothly not to compress the untilled soil. From the results of this study. the newly developed blade(new ONE) proved to be good tilling load performance and had a conclusion that it is possible to use it on power tiller and tractor rotary in common.

  • PDF

Estimation on Bearing Capacity of Environmentally Sustainable Geotextile Gabion Using Oystershell (굴패각을 이용한 친환경적 지오텍스타일 게비언의 지지력 평가)

  • Shin, Eun-Chul;Park, Jeong-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.6
    • /
    • pp.44-52
    • /
    • 2007
  • Recently, oystershell wastes cause serious environmental problem and the need for the researches on the recycling of oystershell have been increased and various methods are already in operation. Field plate bearing tests and numerical analysis were performed to investigate the bearing capacity of oystershell filled geotextile gabion which utilized the waste oystershell at the coastal oyster farm site. The waste oystershell mixed soil specimens were prepared for the laboratory test and field test in terms of varying blending ratio of granite soil and oystershell. Based on the cyclic plate load test results, the spring constant, subgrade modulus of ground, and the reinforcing parameters were determined. The field plate load test results indicate that the bearing capacity of the soil ground with the oystershell mixed ratio of 20% is greater than that of the original ground. Two-dimensional numerical analysis was evaluated the expected deformation in the given conditions. Analysis results show a similar characteristics on bearing capacity with the results of the field plate load test. These findings suggest that the oystershells are very promising construction materials for landfill and earth embankment in coastal area.

Behavior of Laterally Cyclic Loaded Piles Driven into Sand (모래지반에서 반복수평하중을 받는 항타말뚝의 거동)

  • Paik, Kyu-Ho;Park, Won-Woo;Kim, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.913-922
    • /
    • 2009
  • Fourteen model pile load tests using a calibration chamber and instrumented model pile were preformed to investigate the variation of the behaviors of driven piles in sands with soil and lateral cyclic loading conditions. Results of the model tests showed that the first loading cycle generated more than 70% of the pile head rotation developed for 50 lateral loading cycles. Lateral cyclic loading also made an increase of the ultimate lateral load capacity of piles for $K_0$=0.4 and an decrease for $K_0$ higher than 0.4. Higher portion of the increase or decrease in the ultimate lateral load capacity by lateral cyclic loading was generated for the first loading cycle due to densification of loosening of the soil around the pile by lateral cyclic loading. It was also observed that a two-way cyclic loading caused higher ultimate lateral load capacity of driven piles than a one-way cyclic loading. When the pile was in the ultimate state, the maximum bending moment developed in the pile increased with increasing $K_0$ value of soil and was insensitive to the magnitude and number of lateral cyclic loading.

  • PDF

Studies on the Consolidation Characteristics of Marine Clay Stabilized with Lime and Briquette Ash (석회 및 연탄회 안정처리토의 압밀특성에 관한 연구)

  • 김재영;유병옥;주재우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.4
    • /
    • pp.48-58
    • /
    • 1992
  • This study was conducted to investigate the consolidation characteristics of the marine clay, treated with predetermined ratios of lime and briquette ash. The standard consolidation test was performed for the sample of mixture remoulded under the condition of optimum moisture content. The results obtained were as follows ; 1.The increase of the consolidation coefficient due to load increament was larger in the lime treated soil and briquette ash treated soil than in the untreated soil. The decrease of the compression index due to admixing ratio of additives was smaller in the former than in the latter. 2.The increase of the secondary consolidation coefficient of the untreated soil due to load increment was minimal, while that of lime treated soil and the lime-briquette ash treated soil was conspicuous and that of briquette ash treated soil was slight. 3.The $C\alpha$/Cc relationship of untreated soil was represented by colsely distributed points. That of briquette ash treated soil, lime treated soil and the lime-briquette ash treated soil was represented by linear distribution. The $C\alpha$/Cc values of untreated soil, briquette ash treated soil and lime treated soil were approximately 0.049, 0.044 and 0.031, respectively. 4.The maximum consolidation coefficient was obtained with lime and briquette ash (lime : briquette .h 2 :1) mixture ratio of 15%. And the minimum secondary consolidation coefficient, compression index was obtained with same mixture ratio. The required quantity of lime could be reduced and the consolidation was accelerated by applying the above mixture ratio.

  • PDF

Investigation on the responses of offshore monopile in marine soft clay under cyclic lateral load

  • Fen Li;Xinyue Zhu;Zhiyuan Zhu;Jichao Lei;Dan Hu
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.383-393
    • /
    • 2024
  • Monopile foundations of offshore wind turbines embedded in soft clay are subjected to the long-term cyclic lateral loads induced by winds, currents, and waves, the vibration of monopile leads to the accumulation of pore pressure and cyclic strains in the soil in its vicinity, which poses a threat to the safety operation of monopile. The researchers mainly focused on the hysteretic stress-strain relationship of soft clay and kinds of stiffness degradation models have been adopted, which may consume considerable computing resources and is not applicable for the long-term bearing performance analysis of monopile. In this study, a modified cyclic stiffness degradation model considering the effect of plastic strain and pore pressure change has been proposed and validated by comparing with the triaxial test results. Subsequently, the effects of cyclic load ratio, pile aspect ratio, number of load cycles, and length to embedded depth ratio on the accumulated rotation angle and pore pressure are presented. The results indicate the number of load cycles can significantly affect the accumulated rotation angle of monopile, whereas the accumulated pore pressure distribution along the pile merely changes with pile diameter, embedded length, and the number of load cycles, the stiffness of monopile can be significantly weakened by decreasing the embedded depth ratio L/H of monopile. The stiffness degradation of soil is more significant in the passive earth pressure zone, in which soil liquefaction is likely to occur. Furthermore, the suitability of the "accumulated rotation angle" and "accumulated pore pressure" design criteria for determining the required cyclic load ratio are discussed.

Effects of Surface Loading on the Behavior of Soil-Reinforced Segmental Retaining Walls (상재하중이 블록식 보강토 옹벽의 거동에 미치는 영향)

  • 유충식;김주석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.109-116
    • /
    • 2000
  • This paper presents the results of investigation on the effects of surface loading on the performance of soil-reinforced segmental retaining walls using the finite element method of analysis. A parametric study was performed by varying location of surface loading. The results of the analyses indicate that the increment of the reinforcement tensile load due to the presence of surface load may be significantly over-estimated when using the conventional approach. Furthermore, the external stability should be carefully examined when a surface loading is present just outside the reinforced soil zone. The implications of the findings from this study to current design approaches are discussed in detail.

  • PDF