• Title/Summary/Keyword: Soil Environment Management System

Search Result 293, Processing Time 0.05 seconds

Implementation of Ubiquitous Greenhouse Management System Using Sensor Network (센서 네트워크를 활용한 유비쿼터스 온실관리시스템 구현)

  • Seo, Jong-Seong;Kang, Min-Su;Kim, Young-Gon;Sim, Chun-Bo;Joo, Su-Chong;Shin, Chang-Sun
    • Journal of Internet Computing and Services
    • /
    • v.9 no.3
    • /
    • pp.129-139
    • /
    • 2008
  • This paper proposes a Ubiquitous Greenhouse Management System (UGMS) based on USN(Ubiquitous Sensor Network) which can be real-time monitoring and controlling of greenhouse's facilities by collecting environment and soil information with environment and soil sensors, and CCTV camera. The existing systems were controlled simply by temperature. Also, it was possible to monitor only at control room in a greenhouse. For solving problems of the exiting system, our system can remotely monitor and control greenhouse by considering environment information. The detail components are as follows. The system includes the sensor manager and the CCTV manager to gather and manage greenhouse information with soil and the environment sensors, and camera. Also the system has the greenhouse database storing greenhouse information and the greenhouse server transmitting greenhouse information to the GUI and controlling greenhouse. Finally, the GUI showing greenhouse condition to users exists in our system. To verify the executability of the UGMS, after developing the greenhouse model, we confirmed that our system could monitor and control the greenhouse condition at remote GUI by applying the UGMS's components to the model.

  • PDF

Effects of Winter Cover Crop of Ryegrass (Lolium multiflorum) and Soil Conservation Practices on Soil Erosion and Quality in the Sloping Uplands

  • Kim, Su-Jung;Yang, Jae-E.;Park, Chol-Soo;Jung, Yeong-Sang;Cho, Byong-Ok
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.22-28
    • /
    • 2007
  • Most of the uplands in alpine regions during off-season are left as bare soil and thus vulnerable to severe erosion due to the inherent topographical conditions. Appropriate management strategy to cope with this problem is urgently needed, yet few researches have been reported on the effects of winter cover crop and management on soil erosion. We assessed effects of ryegrass (Lolium multiflorum) as cover crop, green manure or mulching residue on soil erosion and quality through field and segment plot lysimeter experiments in alpine uplands. Ryegrass successfully adopted to winter in alpine region based on biomass, nutrient contents, and vigors of top and root systems. Incorporation of ryegrass into soil maintained soil fertility, nutrient uptake, and yield of cabbage exerting potential use as green manure. Cultivation of ryegrass suppressed occurrence of Chinese cabbage pests. Surface coverage by ryegrass as cover crop and mulching residue significantly reduced soil loss up to 96%, when combined with soil conservation management practices. Results revealed maintaining cover crop over winter was beneficial in reducing soil erosion, and sustaining soil quality and Chinese cabbage productivity. This study suggested winter cover crop, followed by green manure and mulching, and conservation tillage system could be one of the best management practices in alpine sloping uplands cultivating Chinese cabbage.

Applicability of Industrial Waste Management Evaluation Model (IWEM) in Korea (지하수 오염방지를 위한 산업폐기물 관리평가 모델(IWEM)의 국내 적용성 분석)

  • Park, Dong-Won;Woo, Nam-C.;Chung, David
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Selection of appropriate liner type would be the most important factor to prevent groundwater contamination by leachate from waste management site. This report introduces the IWEM (Industrial Waste Management Evaluation Model) developed by US EPA to evaluate the potential pollution of groundwater under the waste management unit and to suggest an appropriate type of liner, and provides with the results of IWEM application to a coal-ash landfill site in Korea as a case study. IWEM uses a standard method using a database, a decision-making process based on site characteristics, and the user-friendly input-and-output system. Authors evaluate this model to be applicable in Korea provided that the database is replaced into local data.

Changes in Concentrations of Nutrients and Heavy Metals of Plants and Soils in Rain Garden Systems used for Non-point Source Pollution Management (비점오염원관리를 위한 레인가든에서 식물과 토양의 영양물질과 중금속 농도변화)

  • Kim, Chang-Soo;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.27-35
    • /
    • 2012
  • Recently, there has been increasing interest in the use of rain garden systems as environmentally friendly ecological infrastructures for controlling stormwater runoff and managing non-point source pollution and information for the contamination of soil and plants can be essential for sustainable rain garden management. In this study, four rain garden mesocosms, namely single species planting with Rhododendron lateritium, single species planting with Zoysia japonica, mixed planting with R. lateritium and Z. japonica, and control without plants, were tested to investigate the change in concentrations of nutrients (N and P) and heavy metals (Cd, Cu, Pb, and Ni) in the soil and plants used in the rain garden system. The presence of plants resulted in greater nutrient retention in soil and lower potential leaching from the system. All systems showed an increase in the heavy metal concentrations in soil. The concentrations of most heavy metals were found to be higher in the herbaceous plants (Z. japonica) than in the shrubs (R. lateritium). The belowground part (root) had higher heavy metal concentrations than the aboveground part (leaf) but also showed a potential increase in leaves, and hence, careful plant management should be considered during rain garden operation.

국가 지하수 정보 종합관리 체계의 구축과 활용(II) - 두레박 프로그램과 지하수세상 홈페이지 -

  • 손영철;김규범;최영진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.270-274
    • /
    • 2000
  • We have developed the computer system with MOCT which is called "The Integrated National Groundwater Information system" since 1995 and now begin to supply the database and related informations for ground water by internet homepage. The integrated system is composed of four sub systems which are "Groundwater Information System", "DUREBAK", "Hydrogeologic Map Management System" and "Groundwater World Homepage". The local government offices use the "DUREBAK" program to manage the well development and maintenance. About 1,000,000 wells are managed in "DUREBAK" program and they submit the well database to MOCT every year. And now everyone can obtain the well data and other informations through internet homepage. We have set the standard process of data acquisition and management for ground water last four years.s of data acquisition and management for ground water last four years.

  • PDF

우리나라 토양환경관리 현황과 정부의 역할

  • 황상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.17-19
    • /
    • 2004
  • Recently, we have recognized that ‘Soil Environmental Prevention Act’could not provide perfect solutions on many complicated problems which are now emerging and/or can be solved by adopting comprehensive policies. In this study, some suggestions were made to solve a few tangled problems such as conducting the Land Partnership Plan(LPP) project, investigating soil and ground water contamination of the industrial area, building a integrated information system for soil and ground water, establishing detailed guidelines for remediation and verification, and re-constructing the legal and institutional framework for integrated management of soil and ground water. These suggestions may help policy makers to build conceptual frameworks for solving these problems.

  • PDF

Probabilistic Solution to Stochastic Soil Water Balance Equation using Cumulant Expansion Theory (Cumulant 급수이론을 이용한 추계학적 토양 물수지 방정식의 확률 해)

  • Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.112-119
    • /
    • 2009
  • Based on the study of soil water dynamics, this study is to suggest an advanced stochastic soil water model for future study for drought application. One distinguishable remark of this study is the derivation of soil water dynamic controling equation for 3-stage loss functions in order to understand the temporal behaviour of soil water with reaction to the precipitation. In terms of modeling, a model with rather simpler structure can be applied to regenerate the key characteristics of soil water behavior, and especially the probabilistic solution of the derived soil water dynamic equation can be helpful to provide better and clearer understanding of soil water behavior. Moreover, this study will be the future cornerstone of applying to more realistic phenomenon such as drought management.

Estimation of Soil Loss by Land Use in the Geum River Basin using RUSLE Model (RUSLE 모델을 이용한 금강 유역의 토지 이용별 토사유출량 추정)

  • Park, Jisang;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.619-625
    • /
    • 2006
  • Amount of soil loss is important information for the proper water quality management, In this research, annual average soil loss of the Geum River basin was estimated using RUSLE (Revised Universal Soil Loss Equation) and GIS (Geographic Information System). Input data were manipulated using ArcGIS ver. 8.3. From crop field which constitute 8.2% of the Geum River Basin, annual average soil loss was estimated as 53.6 ton/ha/year. From the rice paddy field which constitutes 20% of the Geum River Basin, soil loss was estimated as 33.5 ton/ha/year, In comparison, forestry area which constitutes 61.8% of the basin discharged 2.8 ton/ha/year, It could be known from this research that appropriate measures should be implemented to prevent excessive soil loss from the agricultural areas.

Estimation of Soil Erosion using SATEEC and USPED and Determination of Soil Erosion Hot Spot Watershed (SATEEC과 USPED를 이용한 토양 유실량 산정 및 우선관리 유역 선정 평가)

  • Seo, Il Kyu;Park, Youn Sik;Kim, Nam Won;Moon, Jong Pil;Ryu, Ji Chul;Ok, Yong Sik;Kim, Ki-Sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.497-506
    • /
    • 2010
  • Severe muddy water problem has been the hot issue in Korea. Because of increased nonpoint source pollutions at Kangwon province, best soil erosion management system is required to reduce inflow of nonpoint source pollutions into the waterbodies. The USLE-based SATEEC system have been developed and enhanced for soil erosion and sediment yield estimation. However, the SATEEC cannot estimate soil depositions depending on topography in the watershed, while the USPED estimates soil erosion and deposition using sediment transport capacity of the surface runoff. In this study, the SATEEC and USPED were used to determine soil erosion hot spot subbasins. For this, 54 subbasins were delineated. In general, soil erosion hot spot subbasins were identified similarly with SATEEC and USPED. However, depending on erosion and deposition patterns in each subbasin. USPED estimated soil erosion hot spot subbasins didn't match those estimated with SATEEC. For some subbasins, much deposition was expected than erosion. This indicates that SATEEC estimated soil erosion values may be overestimated for these subbasins. Thus, care should be taken when understanding soil erosion status in the watershed based on USLE-based SATEEC results. In addition, the USPED results could be used to identify the site-specific soil erosion best management practices. If the USPED and USLE-based SATEEC are combined, it would help determining soil erosion hot spot subwatersheds in economic and environmental perspectives.