• Title/Summary/Keyword: Soil Contamination Warning Standard

Search Result 12, Processing Time 0.022 seconds

Comparison of Heavy Metal Pollutant Exposure and Risk Assessments in an Abandoned Mine Site (폐광산 주변 토양 중금속 오염노출농도 우려기준과 위해성 비교 연구)

  • Choi, Jinwon;Yoo, Keunje;Koo, Myungseo;Park, Joon-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.261-266
    • /
    • 2012
  • In this study, soil environmental impact assessment using risk-based approach was compared with that using concentration-based approach. For this, heavy metal contaminant exposure was characterized in an abandoned mine area. According to the estimated carcinogenic and non-carcinogenic risks, soil ingestion was identified as the most dominant exposure pathway. When contaminant concentrations exceeded the Korean Soil Contamination Warning Standards, their corresponding risk values also exceeded the Total Soil Risk Standard. Even the cases of satisfying the Korean Soil Contamination Warning Standards mostly showed higher risk levels than the Total Soil Risk Standard, re-confirming a more sensitivity of the risk-based assessment than concentration-based assessment. However, the in-depth analysis of the estimated non-carcinogenic risk values revealed a few cases for soil contact pathway showing contaminant concentrations higher than the Korean Soil Contamination Warning Standards although their non-carcinogenic risk values satisfied the level of Hazard Index Standard. The findings from this study support a necessity of shifting policy paradigm from concentration-based approach into risk-based approach for reliable risk assessment in abandoned mine areas, and also suggest a necessity of further fundamental studies regarding risk factors and standards.

Risk assessment for Soil Contamination Warning Standard and Soil Background Concentration (토양오염 우려기준과 토양 자연배경농도에 대한 위해성평가)

  • Shin, Dong;Park, Seong-Jae;Jo, Young Tae;Bong, Jae-eun;Park, Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.37-49
    • /
    • 2021
  • There is domestic Soil Contamination Warning Standard (SCWS) as remediation standard concentration of contaminated soils. No risk should be observed at soil concentration less than SCWS. Therefore, SCWS was evaluated to confirm the risk assessment. Background Concentration of Soil (BGC) and target remediation concentration were also assessed. The results show that Excess Cancer Risk (ECR) of SCWS was the highest in the groundwater intake pathway (Adult: 6.27E-04, Child: 2.81E-04). Total Cancer Risk (TCR) was 7.76E-04 and 4.30E-04 for adult and child, exceeding reference value (10-6). Hazard Quotient (Non-Carcinogenic Risk, HQ) was the highest in the indoor air inhalation pathway (Adult: 3.64E+03, Child: 8.74E+02). Hazard Index (Total Non-Carcinogenic Risk, HI) exceeded reference value 1. ECR of the BGC was the highest in the groundwater intake pathway (Adult: 1.71E-04, Child: 7.67E-05). TCR was 2.12E-04 for adults and 1.17E-04 for children, exceeding the reference value (10-6). HQ was the highest in groundwater intake pathway (Adult: 4.10E-01, Child: 1.84E-01). HI was lower than reference value 1 (Adult: 4.78E-01, Child: 2.50E-01). The heavy metal affecting ECR was Arsenic (As). The remediation-concentration of As was 7.14 mg/kg which is higher than BGC (6.83 mg/kg). TCR of As should be less than reference value (10-6), but it was higher for all of SCWS, BGC and target remediation concentration. Therefore, it is suggested that risk assessment factors should be re-evaluated to fit domestic environmental settings and SCWS should be induced to satisfy the risk assessment.

Investigation and Risk Assessment of Heavy Metals Contamination around an Abandoned Metal Mine in Korea

  • Lee, Jong-Wha;Kwak, Soon-Sun;Hong, Sung-Chul;Park, Sang-Il;Jang, Bong-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.6
    • /
    • pp.456-464
    • /
    • 2010
  • Recently, heavy metals contamination of the agricultural soil and crops surrounding mining areas has been identified as one of the most serious environmental problems in South Korea. The Ministry of the Environment in Korea conducted a Preliminary National Environmental Health Survey (PNEHS) in abandoned metal mines in 2007. The priority for a subsequent detailed examination was ranked from the results of PNEHS. The studied mine which was ranked as being of the highest priority is located in the midwestern part of Korea and was operated from 1911 to 1985. In this study, the contamination levels of the heavy metals in the abandoned metal mine were investigated. From the results, the average daily dose (ADD), target hazard quotient (THQ) and target cancer risk of the heavy metals were evaluated. The concentration of arsenic (As) in all of the tailings from the mine was higher than its countermeasure standard of Korea. In particular, the highest concentration of As, 330 mg/kg, was up to 15 times higher than its countermeasure standard. The average concentration of As in agricultural soils was higher than the warning standard of Korea, and higher than its countermeasure standard at six sites. The average concentrations of the analyzed heavy metals in agricultural soil were below the warning standard, but concentrations of cadmium (Cd) and lead (Pb) at 4 sites were higher than its warning standard. The average concentration of As in surface water exceeded the warning standard of Korea. The value of the THQ of As for the tailings was higher than the health protection standard 1. The value of THQ of As for the farmlands was lower than the standard, while the hazard index (HI) of As was higher than the standard. The value of target cancer risk (TCR) of As, $6.44{\times}10^{-4}$, were higher than the health protection standard of a lifetime risk for TCR at $1{\times}10^{-6}$. This suggests that the residents around the metal mines are exposed to As pollution with a carcinogenic risk.

The Contamination Characteristics of BTEX and TPH Components in Silty Soils with the Oil Leakage Event from Point Source (점오염원 형태의 유류누출 사건에 의한 실트질 토양층에서 BTEX와 TPH 성분의 오염도 연구)

  • Kang, Dong-Hwan;Chung, Sang-Yong;Go, Dong-Ho
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.393-402
    • /
    • 2006
  • The contamination characteristics of BTEX and TPH components in silty soils with the oil leakage event from point source were studied. The over ratios of three soil pollution standard for TPH component were $1.5{\sim}1.7$ times higher than that of BTEX component. The mean and maximum values of BTEX and TPH components with sample points were B-zone > A-zone > C-zone, and the highest concentrations were measured at $1{\sim}2m$ depth below surface. BTEX and TPH components were increased with linear distance in zone within 120 m and 80 m from point source. For the zone more than 120 m, BTEX and TPH concentrations were under soil pollution standard. The cutoff values of indicator kriging using BTEX and TPH components were defined as confirmative limit, warn- ing limit and counterplan limit. The variograms of indicator-transformed data were selected linear model. The contamination ranges of BTEX and TPH components using confirmative limit and warning limit were estimated similar, but the contamination range of those using counterplan limit was much reduced. The maximum contamination probabilities were estimated by probability maps usinB confirmative limit, warning limit and counterplan limit. The maximum contamination probabilities with three soil pollution standard were estimated 26%, 26% and 13% for BTEX component, and 44%, 38% and 26% for TPH component.

Assessment of Selected Heavy Metal Concentrations in Agricultural Soils around Industrial Complexes in Southwestern Areas of Korea

  • Kim, Dong-Jin;Park, Jung-Hwon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.524-530
    • /
    • 2016
  • Agricultural soils near or around industrial complexes can contain a certain amount of heavy metals that readily enter the food chain and negatively affect human health. Therefore, we conducted the study to investigate the distribution of selected heavy metals, including arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), lead (Pb), mercury (Hg), and zinc (Zn), in farm-land soils around fifteen industrial complexes in the southwestern provinces, Korea. The concentrations of heavy metals in the soil samples were determined by the pseudo-total aqua regia (3 HCl : $1HNO_3$) digestion procedure. The heavy metal concentrations in most soils examined did not exceed the levels of Soil Contamination Warning Standard (SCWS) for agricultural lands (Region 1) presented in Soil Environment Conservation Law (SECL) established by Ministry of Environment (MOE), Korea. However, only one sampling site showed higher As amount ($27.1mg\;kg^{-1}$) than the SCWS level of As ($25mg\;kg^{-1}$). Pollution index (PI) for heavy metals did not exceed 1.0. The PI values were significantly positively correlated (p < 0.01) with the heavy metal concentrations. In particular, the values of correlation coefficient between the Cd and Pb concentrations and the PI values were higher than those estimated from other combinations, and thus the amounts of Cd and Pb in the agricultural soils highly affected the PI values for the heavy metals.

Chemical Properties of Soil in the Proposed Horticultural Complexes of Saemangeum Reclaimed Tideland (새만금 전작.원예단지 후보지구 토양의 화학적 특성)

  • Son, Jae-Gwon;Choi, Jin-Kyu;Cho, Jae-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.67-73
    • /
    • 2009
  • Chemical properties of soil in the proposed horticultural complexes of Saemangeun reclaimed tideland were studied for sustainable development of the newly reclaimed land resources. The soil texture of Gwanghwal, Gyehwa, Mangyeong and Okgu complex area were sandy loam. The pH and ESP (exchangeable sodium percentage) were 7.42 to 7.82 and 61.05 to 73.62 %, respectively. Compared to general agricultural land in Korea, the soil organic matter and other plant nutrients were low. The concentrations of heavy metals in the soil were found to be acceptable except several sites where they doesn't meet the warning standard of agricultural land contamination. Continuous monitoring and interception of external pollutants are suggested for water-soil-plant system conservation.

Heavy metals and pollution index of agricultural soils around industrial complexes in the Jeon-Buk regions of Korea

  • Suwanmanon, Sorakon;Kim, Ki In
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.799-811
    • /
    • 2019
  • The aim of this study was to evaluate heavy metal contamination and pollution index of agricultural soils around industrial complexes in the Jeon-Buk Regions of Korea. Soil samples near industrial complexes in 2017 were collected at two depths (0 - 15 and 15 - 30 cm) within a 500- and 1000-meter radius before planting. Eight heavy metals (Arsenic (As), cadmium (Cd), chromium (Cr), Cupper (Cu), nickel (Ni), lead (Pb), mercury (Hg) and zinc (Zn)) and the pollution index (PI), geoaccumulation index (Igeo) and soil pollution index (SPI) were evaluated based on soil contamination warning standard (SCWS). Overall, the heavy metal concentrations were below the SCWS. The PI ranged from 0.1 to 0.9 and categorized into Group 1 which is not polluted with any heavy metals. The average Igeo values of all the soil samples ranged from - 2.56 to 3.22. The Igeo values of Cd and Hg may not represent well the pollution index because the heavy metal concentrations in the soil is lower compared to the SCWS. In fact, based on the heavy metal concentrations, the Igeo for monitored soils should be categorized into Group 1, uncontaminated to moderately contaminated. However, the Igeo of Cd and Hg are classified into heavily contaminated. These results suggest that for calculating the Igeo, the heavy metal concentration and background concentration should be used very carefully if the heavy metal concentration in the soil is lower than the background concentration. SPI for all the soil samples ranged from 0.00 to 0.11 which indicates no heavy metal pollution was observed.

Long-Term Investigation of Regional Topographic Effects on Soil Chemical Properties and Heavy Metal Concentrations in Paddy Fields

  • Ahn, Byung-Koo;Kang, Seong-Soo;Shin, Jae-Yeon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.738-743
    • /
    • 2012
  • Topographic conditions of agricultural fields work as a important factor to identify different soil properties. This study was conducted to investigate the selected soil chemical properties and the concentrations of heavy metals, Cd, Cr, Pb, Cu, Ni, and Zn, in the paddy fields of different topographic areas at four year intervals from 1999 to 2011. Three-hundred soil sampling sites in the paddy fields were selected from the different topographic areas that were local valley and fans, fluvio-marine deposits, alluvial plains, and diluvial terraces. The mean values of soil pH ranged 5.7~5.8 that were within optimal range for rice cultivation. The mean values of other properties such as soil organic matter (SOM) content, the concentrations of exchangeable cations, $K^+$, $Ca^{2+}$, and $Mg^{2+}$, and available silicate concentration were lower or close to the optimal values, but the mean concentrations of available phosphorus were exceeded the range of optimal value, $80{\sim}120mg\;kg^{-1}$, in many paddy fields. In particular, The concentrations of available phosphorus in the paddy fields of local valley and fans, alluvial plains, and fluvio-marine plains were mostly declined. However, in diluvial terrace areas, the phosphorus concentrations unexpectedly increased; furthermore, they were significantly higher than those in other topographic areas. The mean concentrations of 0.1 M HCl-extractable heavy metals, Cd, Cr, Pb, Cu, Ni, and Zn, in the paddy fields were slightly and gradually declined during the study years, but the Pb concentrations were not statistically changed. In addition, the concentrations of heavy metals were widely ranged depending on the different sampling sites. Nevertheless, the concentrations of heavy metals were significantly lower than the levels of Soil Contamination Warning Standard (SCWS) for agricultural lands (1-region) presented in Soil Environment Conservation Law (SECL).

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.

Relationship between Selected Metal Concentrations in Korean Raspberry (Rubus coreanus) Plant and Different Chemical Fractions of the Metals in Soil

  • Ahn, Byung-Koo;Lee, Jang-Choon;Han, Soo-Gon;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.591-596
    • /
    • 2011
  • The applications of chemical fertilizers and various types of organic materials may cause heavy metal accumulation in soil. In this study, we conducted to investigate the relationship between the different chemical forms of heavy metals such as Cr, Cd, Pb, Cu, Ni, and Zn retained in soil and the metal concentrations in Korean raspberry plant. Forty five soil samples were collected from 2 to 6 years old Korean raspberry cultivation fields (RCFs), Gochang, Korea, to determine total, exchangeable (1.0 M $MgCl_2$-extractable), DTPA-extractable metal contents. The leaves and fruits of raspberry plant were sampled at harvest stage. Total metal contents in soils ranged from $0.87mg\;kg^{-1}$ to $66.82mg\;kg^{-1}$. Exchangeable and DTPA-extractable metals ranged between 0.02 and $0.67mg\;kg^{-1}$ and between $0.05mg\;kg^{-1}$ and $7.07mg\;kg^{-1}$, respectively. The metal concentrations in the plant leaf and fruit determined on a dry-basis were between $1.30mg\;kg^{-1}$ and $38.82mg\;kg^{-1}$ and between $0.05mg\;kg^{-1}$ and $21.51mg\;kg^{-1}$, respectively, but Cd and Pb were not detected in the leaf. The total, exchangeable, and DTPA-extractable contents of the metal ions in soil were directly correlated one another, but the contents of different metals in the different fractions were inversely correlated in general. Most of total and DTPA-extractable metals in the soil were directly correlated with the contents of the same metals in the plant, whereas exchangeable metals in the soil were not statistically correlated with the same metals in plants. Thus, we concluded that the metal contents in the raspberry field soils were much lower thanthe levels of Soil Contamination Warning Standard (SCWS), and the plant metal concentrations were also less than the maximum permissible limits. The total and DTPA-extractable metals in the soil were closely related to the metal concentrations in the plant.