• 제목/요약/키워드: Soil Carbon Storage

검색결과 132건 처리시간 0.025초

한강 수변구역 복원지의 표토 특성 및 유기탄소 저장량 추정 (The Topsoil Characteristics, and Estimation of Topsoil Organic Carbon Storage at Restoration Areas in Riparian Zones of the Han River)

  • 이종문;조용현;김윤호;박성우
    • 한국조경학회지
    • /
    • 제47권4호
    • /
    • pp.12-23
    • /
    • 2019
  • 본 연구는 한강 수변구역에 복원지를 대상으로 환경 특성에 대하여 현황조사 및 분석을 실시하고, 표토 유기탄소 저장량을 정량화하였다. 조사 대상지 21개소를 조사 분석한 결과, 대상지에 식재한 수종 수는 총 17개 수종이었으며, 대상지별로 평균 $2.86{\pm}0.13$종으로서 최소 1개 수종에서 최대 7개 수종이 식재된 것으로 나타났다. 흉고직경은 평균 $9.1{\pm}0.6cm$, 수고는 평균 $6.2{\pm}0.3m$, 뿌리량은 평균 $0.13{\pm}0.18g/cm^3$이었다. 토양특성을 조사 분석한 결과, 총 21개 항목 중 6개 항목인 용적밀도, 고상률, 석력비, 경도, 모래 함량, pH는 층위가 깊어질수록 증가하는 것으로 나타났고, 나머지 입단율, 함수율, 유기물, 전질소 등 15개 항목은 층위가 깊어질수록 감소하는 것으로 나타났다. 층위별 표토 유기탄소 저장량은 0~10cm에서 $11.54{\pm}1.08ton/ha$, 10~20cm는 $8.69{\pm}0.81ton/ha$, 20~30cm가 $7.97{\pm}0.79ton/ha$로서 0~30cm까지의 총 표토 유기탄소 저장량은 $28.21{\pm}7.31ton/ha$로 분석되었다. 과거 토지이용별 표토 유기탄소 저장량은 농경지였던 복원지가 $35.17{\pm}5.31ton/ha$로 가장 높았고, 주거지역 $28.16{\pm}8.31ton/ha$, 상업지역 $21.87{\pm}9.05ton/ha$, 공업지역 $19.23{\pm}12.48ton/ha$, 나지 $17.07{\pm}11.33ton/ha$ 순으로 나타났다. 조성연도별 표토 유기탄소 저장량은 2006년 조성된 복원지역이 $38.46{\pm}3.14ton/ha$로 가장 높았고, 2016년 복원지역 $28.57{\pm}7.84ton/ha$, 2011년 복원지역 $16.78{\pm}6.06ton/ha$ 순으로 분석되었다. 본 연구결과는 향후 수변구역 복원지의 탄소저감 효과 증진을 위한 기초자료 제공 및 평가기준이 될 것으로 기대된다.

Regional Differences in Onion Bulb Quality and Nutrient Content, and the Correlation Between Bulb Characteristics and Storage Loss

  • Lee, Jongtae;Ha, Injong;Kim, Heedae;Choi, Silim;Lee, Sangdae;Kang, jumsoon;Boyhan, George E.
    • 원예과학기술지
    • /
    • 제34권6호
    • /
    • pp.807-817
    • /
    • 2016
  • Many onion growers and researchers assert that differences in soil type, agricultural practices, weather, and duration of prolonged onion cultivation in a particular field could affect onion bulb quality. This study evaluates the bulb quality of onions grown in different regions and determines the correlations between bulb characteristics and postharvest loss during cold and ambient storage. Soil and onion bulbs were collected from fields in six onion growing regions in Korea, during the growing season of 2011-2012. The fresh weight, dry matter content, and carbon (C), sulfur and magnesium contents of the onion bulbs were significantly affected by the location in which they were grown. Bulbs grown in Muan had the greatest number of scales, thinnest scale thickness, and the highest total soluble solids (TSS) and total flavonoids (TF). Bulbs originating from Jecheon had the lowest pyruvic acid (PA), total phenolics and TF. Storage loss of bulbs from the different regions was similar in refrigerated storage, but differed in ambient temperature storage. Bulb fresh weight was positively correlated with scale thickness (r = 0.617) and cold storage loss (CSL; r = 0.398). Dry matter content was positively correlated with C (r = 0.958) and TF (r = 0.256) contents, while it was negatively correlated with CSL (r = -0.424). CSL was primarily affected by the fresh weight, as well as the dry matter, C, and PA contents of the bulbs, while ambient storage loss was primarily influenced by the amount of TSS.

미래 기후 변화 시나리오에 따른 환북극의 변화 (Projection of Circum-Arctic Features Under Climate Change)

  • 이지연;조미현;고영대;김백민;정지훈
    • 대기
    • /
    • 제28권4호
    • /
    • pp.393-402
    • /
    • 2018
  • This study investigated future changes in the Arctic permafrost features and related biogeochemical alterations under global warming. The Community Land Model (CLM) with biogeochemistry (BGC) was run for the period 2005 to 2099 with projected future climate based on the Special Report on Emissions Scenarios (SRES) A2 scenario. Under global warming, over the Arctic land except for the permafrost region, the rise in soil temperature led to an increase in soil liquid and decrease in soil ice. Also, the Arctic ground obtained carbon dioxide from the atmosphere due to the increase in photosynthesis of vegetation. On the other hand, over the permafrost region, the microbial respiration was increased due to thawing permafrost, resulting in increased carbon dioxide emissions. Methane emissions associated with total water storage have increased over most of Arctic land, especially in the permafrost region. Methane releases were predicted to be greatly increased especially near the rivers and lakes associated with an increased chance of flooding. In conclusion, at the end of $21^{st}$ century, except for permafrost region, the Arctic ground is projected to be the sink of carbon dioxide, and only permafrost region the source of carbon dioxide. This study suggests that thawing permafrost can further to accelerate global warming significantly.

Effect of Carbonized Biomass Application on Organic Carbon Accumulation and Soy Bean Yields in Upland Soil

  • Lee, Sun-Il;Park, Woo-Kyun;Kim, Gun-Yeob
    • 한국토양비료학회지
    • /
    • 제49권1호
    • /
    • pp.1-6
    • /
    • 2016
  • Carbonized biomass could be used as a mechanism for long-term storage of C in soils. However, experimental results are variable. Objective of this study was carried out to evaluate the effect of carbonized biomass made from soybean residue on soil organic carbon and seed yield during soybean cultivation. The carbonized biomass was made by field scale mobile pyrolyzer. Pyrolyzer was performed in a reactor operated at $400{\sim}500^{\circ}C$ for 2 hours using soybean residue. The treatments consisted of four levels as the control without input and three levels of carbonized biomass inputs as $357kg\;ha^{-1}$, C-1 ; $714kg\;ha^{-1}$, C-2 ; $1,428kg\;ha^{-1}$, C-3. It was appeared that seed yield of soybean was $2,847kg\;ha^{-1}$ for control, $2,897kg\;ha^{-1}$ for C-1, $2,946kg\;ha^{-1}$ for C-2 and $3,211kg\;ha^{-1}$ for C-3 at the end of experiment. It was shown that the contents of SOC were $5.21g\;kg^{-1}$ for C-1, $5.93g\;kg^{-1}$ for C-2, $7.00g\;kg^{-1}$ for C-3 and $4.73g\;kg^{-1}$ for the control at the end of experiment. Accumulated SOC contents linearly significantly (P < 0.001) increased with increasing the carbonized biomass input. The slopes (0.00162) of the regression equations suggest that SOC contents from the soil increase by $0.162g\;kg^{-1}$ with every $100kg\;ha^{-1}$ increase of carbonized biomass rate. Consequently the carbonized biomass for byproducts such as soybean residue could increase SOC. It might be considered that the experimental results will be applied to soil carbon sequestration for future study. More long-term studies are needed to prove how long does SOC stay in agricultural soils.

충주지역의 자작나무와 가래나무 조림지의 지상부 탄소고정에 관한 연구 (Carbon Storage in Aboveground of Betula platyphylla and Juglans mandshurica Plantations, Chungju, Korea)

  • 이상진;박관수
    • 한국환경복원기술학회지
    • /
    • 제10권6호
    • /
    • pp.62-69
    • /
    • 2007
  • This study has been carried out to estimate aboveground carbon contents in an average 30-years-old Betula platyphylla and 32-years-old Juglans mandshurica stands in Chungju, Chungbuk Province. Nine sample trees were cut in each forest and soil samples were collected. Carbon concentration in stemwood, stembark, branch, and foliage were ranged from 54.6% to 57.0% in Betula platyphylla and 53.5% to 56.9% in Juglans mandshurica stands. Aboveground carbon contents was estimated by the equation model logWt=A+BlogD where Wt is oven-dry weight in kg and D is DBH in cm. Total aboveground carbon contents was 34.31t/ha in Betula platyphylla stand and 21.10t/ha in Juglans mandshurica stand. Aboveground net primary carbon production was estimated at 2.31t/ha/yr in Betula platyphylla stand and 2.03t/ha/yr in Juglans mandshurica stand.

Soil Organic Matter and Nutrient Accumulation at the Abandoned Fields

  • Park, Byung Bae;Shin, Joon Hwan
    • 한국산림과학회지
    • /
    • 제97권5호
    • /
    • pp.492-500
    • /
    • 2008
  • Since vegetation significantly influences on soil carbon and nutrient storage, vegetation change has been focused on terrestrial carbon and nutrient cycling studies. In this study we investigated soil carbon and major nutrient capitals at the abandoned fields, which had different vegetation composition: a three year abandoned field ($AGR_3$), two ten years abandoned fields ($PD_{10}$ dominant with Pinus densiflora and Fraxinus rhynchophylla and $PM_{10}$ dominant with Populus maximowiczii), and an over sixty years forest ($FOR_{60}$). which were located at Hongcheon-gun, Kangwon-do, South Korea. Both main effects for organic matter (%) were significant: shallow soil > deep soil and $FOR_{60}=PM_{10}$ > $AGR_3=PD_{10}$. Nitrogen concentrations at $PM_{10}$ were the highest, while the lowest at $PD_{10}$. Available phosphorus concentrations were the highest at $PD_{10}$, which were over 10 times of site $FOR_{60}$ and $AGR_3$ at 0-10 cm soil depth. The average organic matter ($173Mg\;ha^{-1}$) and nitrogen contents ($10Mg\;ha^{-1}$) of $PM_{10}$ and $FOR_{60}$ were higher than those of $AGR_3$ and $PD_{10}$ by 57% and 42%, respectively. The available phosphorus contents above 30 cm mineral soil at $PD_{10}$ ($3.8Mg\;ha^{-1}$) and $PM_{10}$ ($1.3Mg\;ha^{-1}$) were over 120 times and 40 times more than at $FOR_{60}$. Calcium ($3.7Mg\;ha^{-1}$) and magnesium contents ($2.8Mg\;ha^{-1}$) at $FOR_{60}$ were twice or three times higher than at other sites. Organic matter amounts in 0-10 cm and 10-30 em soil had significant positive relationships with nitrogen, calcium, and magnesium contents, but not available phosphorus and potassium contents. This study could not identify the effect of chronological factor and vegetation composition on soil carbon and nutrient capital owing to diverse topography as well as limited study sites. However, this study suggests the accuracy of investigation for regional carbon and nutrient sequestration can be achieved by considering the period of abandoned time on the fields and the land use types. These results may suggest the benefits of forest restoration for soil carbon and nutrient accumulation in marginal agricultural lands in South Korea.

간벌 강도가 소나무림의 토양, 낙엽층 및 고사목 탄소 저장량에 미치는 영향 (Thinning Intensity Effects on Carbon Storage of Soil, Forest Floor and Coarse Woody Debris in Pinus densiflora Stands)

  • 고수인;윤태경;김성준;김춘식;이상태;서경원;손요환
    • 한국산림과학회지
    • /
    • 제103권1호
    • /
    • pp.30-36
    • /
    • 2014
  • 본 연구의 목적은 소나무림을 대상으로 간벌 시행 4년 후, 간벌 강도에 따른 토양, 낙엽층, 고사목의 탄소 저장량 변화를 분석하는 것이다. 이를 위하여 강원도 정선군 소재의 소나무림 연구지 1과 경기도 광릉 시험림 내 소나무림 연구지 2를 대상으로 연구를 수행하였다. 2008년에 임분 밀도를 기준으로 간벌 강도를 달리한 3개의 처리구를 각 연구지에 설치하였다. 연구지 1은 대조구(0%), T20 처리구(20%), T30 처리구(30%)로 설계하였으며, 연구지 2는 대조구(0%), T39 처리구(39%), T74 처리구(74%)로 설계하였다. 그리고 2012년에 0-50 cm 깊이의 토양, 낙엽층, 고사목의 탄소 저장량을 측정하였다. 연구지 1에서 토양, 낙엽층, 고사목의 총 탄소 저장량은 T30 처리구($109.80t{\cdot}C{\cdot}ha^{-1}$)가 대조구($86.69t{\cdot}C{\cdot}ha^{-1}$)에 비해 통계적으로 유의하게 높았으며, 연구지 2의 총 탄소 저장량은 T74 처리구($97.02t{\cdot}C{\cdot}ha^{-1}$)가 대조구($72.04t{\cdot}C{\cdot}ha^{-1}$)와 T39 처리구($63.25t{\cdot}C{\cdot}ha^{-1}$)에 비해 통계적으로 유의하게 높았다. 연구지 1과 연구지 2에서 간벌 강도가 가장 강한 처리구의 총 탄소 저장량이 각각 가장 높게 나타났다. 본 연구는 간벌이 토양, 낙엽층, 고사목 탄소 저장량에 미치는 단기간의 영향을 분석한 것이므로 보다 장기적인 영향을 평가할 수 있는 추가 연구가 필요하다.

Carbon stocks and factors affecting their storage in dry Afromontane forests of Awi Zone, northwestern Ethiopia

  • Gebeyehu, Getaneh;Soromessa, Teshome;Bekele, Tesfaye;Teketay, Demel
    • Journal of Ecology and Environment
    • /
    • 제43권1호
    • /
    • pp.43-60
    • /
    • 2019
  • Background: Tropical montane forests played an important role in the provision of ecosystem services. The intense degradation and deforestation for the need of agricultural land expansion result in a significant decline of forest cover. However, the expansion of agricultural land did not completely destruct natural forests. There remain forests inaccessible for agricultural and grazing purpose. Studies on these forests remained scant, motivating to investigate biomass and soil carbon stocks. Data of biomass and soils were collected in 80 quadrats ($400m^2$) systematically in 5 forests. Biomass and disturbance gradients were determined using allometric equation and disturbance index, respectively. The regression modeling is employed to explore the spatial distribution of carbon stock along disturbance and environmental gradients. Correlation analysis is also employed to identify the relation between site factors and carbon stocks. Results: The result revealed that a total of 1655 individuals with a diameter of ${\geq}5cm$, representing 38 species, were measured in 5 forests. The mean aboveground biomass carbon stocks (AGB CS) and soil organic carbon (SOC) stocks at 5 forests were $191.6{\pm}19.7$ and $149.32{\pm}6.8Mg\;C\;ha^{-1}$, respectively. The AGB CS exhibited significant (P < 0.05) positive correlation with SOC and total nitrogen (TN) stocks, reflecting that biomass seems to be a general predictor of SOCs. AGB CS between highly and least-disturbed forests was significantly different (P < 0.05). This disturbance level equates to a decrease in AGB CS of 36.8% in the highly disturbed compared with the least-disturbed forest. In all forests, dominant species sequestrated more than 58% of carbon. The AGB CS in response to elevation and disturbance index and SOC stocks in response to soil pH attained unimodal pattern. The stand structures, such as canopy cover and basal area, had significant positive relation with AGB CS. Conclusions: Study results confirmed that carbon stocks of studied forests were comparable to carbon stocks of protected forests. The biotic, edaphic, topographic, and disturbance factors played a significant variation in carbon stocks of forests. Further study should be conducted to quantify carbon stocks of herbaceous, litter, and soil microbes to account the role of the whole forest ecosystem.

도시 녹지 가치 평가를 위한 탄소 흡수량 추정 - 서울시를 대상으로 - (Estimation of Carbon Uptake for Urban Green Space: A Case of Seoul)

  • 이동근;박진한;박찬
    • 환경영향평가
    • /
    • 제19권6호
    • /
    • pp.607-615
    • /
    • 2010
  • Urban green space is often at the centre of the debate on urban substantiality because it provides functions of space, e.g. for wildlife, recreation, growing vegetables, psychological wellbeing, social interaction, etc. Traditionally, the various functions of urban green spaces clearly show that green spaces contain important values that contribute to the overall quality of urban life. After Kyoto protocol, it has becoming important to more accurately evaluate carbon uptake by urban green space. Many studies have analyzed the benefits, costs, and carbon storage capacity associated with urban green space. These studies have been limited by a lack of research on urban tree biomass and carbon uptake by soil, such that estimates of carbon storage in urban systems. This study calculate more accurately the amount of carbon uptake by urban green space. This study also complement the existing methods to estimate the urban green space carbon uptake. It has been studied how to evaluate carbon uptake function of urban green space. The surface area of urban green space increased 5% by complemented method and carbon uptake is also increased. Based on this result, the carbon uptake per capita was analysed and compared to the area of carbon uptake. And this study discussed the reasons for the differences between the new and earlier estimates, as well as implications for our understanding of the global carbon cycle. In conclusion, these results could contribute as preliminary data to policy makers when climate change adaptation strategy is established.

벼논에서 양분관리별 탄소의 흡수·배출에 대한 탄소수지 평가 (Evaluation of Carbon Balance for Carbon Sink/Emission with Different Treatments in Paddy Field)

  • 김건엽;이종식;이선일;정현철;최은정;나운성
    • 환경생물
    • /
    • 제35권4호
    • /
    • pp.715-725
    • /
    • 2017
  • 토양 유기탄소 축적량 변화와 작물의 생태계 탄소 수지를 파악하기 위하여 농업의 탄소 관리에 필요한 기초 자료 마련을 위하여 2014~2016년 (3년) 벼 재배기간 동안 토양의 유기탄소 축적량과 작물의 생태계 순 생산량을 측정하였다. 그 결과로 벼 재배지 토양 유기탄소 축적량은 NPK+볏짚퇴비 처리($3.88Mg\;C\;ha^{-1}$)에서 가장 많았고 NPK (화학비료) 처리보다 40.8%, NPK+헤어리베치 처리보다 17.0%의 축적 효과가 있었다. 그러나 NPK+볏짚퇴비 처리가 NPK+헤어리베치에 비해 토양 유기탄소 축적량이 높게 나타나 헤어리베치 시용에 비해 볏짚퇴비 시용이 농경지 내 탄소 축적량이 높은 것으로 나타났다. 벼 재배지 생태계 순 생산량은 NPK 처리($11.31Mg\;C\;ha^{-1}$)에 비해 NPK+헤어리베치 처리($14.01Mg\;C\;ha^{-1}$)에서 19.3%와 NPK+볏짚퇴비 처리($12.6Mg\;C\;ha^{-1}$)에서 10.2% 축적 효과가 있었다. 따라서 화학비료 단일 처리보다 화학비료를 절감하기 위한 유기물 처리가 토양유기탄소 축적 및 재배지의 작물 생태계 탄소 축적량을 증대시키는 효과가 있는 것으로 나타났다.