• 제목/요약/키워드: Software reliability growth model

Search Result 128, Processing Time 0.021 seconds

Bayesian parameter estimation and prediction in NHPP software reliability growth model (NHPP소프트웨어 신뢰도 성장모형에서 베이지안 모수추정과 예측)

  • Chang, Inhong;Jung, Deokhwan;Lee, Seungwoo;Song, Kwangyoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.755-762
    • /
    • 2013
  • In this paper we consider the NHPP software reliability model. And we deal with the maximum likelihood estimation and the Bayesian estimation with conjugate prior for parameter inference in the mean value function of Goel-Okumoto model (1979). The parameter estimates for the proposed model is presented by MLE and Bayes estimator in data set. We compare the predicted number of faults with the actual data set using the proposed mean value function.

The Study for ENHPP Software Reliability Growth Model based on Burr Coverage Function (Burr 커버리지 함수에 기초한 ENHPP소프트웨어 신뢰성장모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.33-42
    • /
    • 2007
  • Accurate predictions of software release times, and estimation of the reliability and availability of a software product require quantification of a critical element of the software testing process : test coverage. This model called Enhanced non-homogeneous poission process(ENHPP). In this paper, exponential coverage and S-shaped model was reviewed, proposes the Kappa coverage model, which maked out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE statistics and Kolmogorov distance, for the sake of efficient model, was employed. From the analysis of mission time, the result of this comparative study shows the excellent performance of Burr coverage model rather than exponential coverage and S-shaped model using NTDS data. This analysis of failure data compared with the Kappa coverage model and the existing model(using arithmetic and Laplace trend tests, bias tests) is presented.

  • PDF

A Study on the Imperfect Debugging Effect on Release Time of Dedicated Develping Software (불완전디버깅이 주문형 개발소프트웨어의 인도시기에 미치는 영향 연구)

  • Che Gyu Shik
    • Journal of Information Technology Applications and Management
    • /
    • v.11 no.4
    • /
    • pp.87-94
    • /
    • 2004
  • The software reliability growth model(SRGM) has been developed in order to estimate such reliability measures as remaining fault number, failure rate and reliability for the developing stage software. Almost of them assumed that the faults detected during testing were evetually removed. Namely, they have studied SRGM based on the assumption that the faults detected during testing were perfectly removed. The fault removing efficiency. however. IS imperfect and it is widely known as so in general. It is very difficult to remove detected fault perfectly because the fault detecting is not easy and new error may be introduced during debugging and correcting. Therefore, the fault detecting efficiency may influence the SRGM or cost of developing software. It is a very useful measure for the developing software. much helpful for the developer to evaluate the debugging efficiency, and, moreover, help to additional workloads necessary. Therefore. it is very important to evaluate the effect of imperfect dubugging in point of SRGM and cost. and may influence the optimal release time and operational budget. I extent and study the generally used reliability and cost models to the imperfect debugging range in this paper.

  • PDF

The Study for ENHPP Software Reliability Growth Model Based on Kappa(2) Coverage Function (Kappa(2) 커버리지 함수를 이용한 ENHPP 소프트웨어 신뢰성장모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2311-2318
    • /
    • 2007
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. Accurate predictions of software release times, and estimation of the reliability and availability of a software product require Release times of a critical element of the software testing process : test coverage. This model called Enhanced non-homogeneous Poission process(ENHPP). In this paper, exponential coverage and S-shaped model was reviewed, proposes the Kappa coverage model, which make out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE statistics and Kolmogorov distance, for the sake of efficient model, was employed. Numerical examples using real data set for the sake of proposing Kappa coverage model was employed. This analysis of failure data compared with the Kappaa coverage model and the existing model(using arithmetic and Laplace trend tests, bias tests) is presented.

A BAYESIAN APPROACH FOR A DECOMPOSITION MODEL OF SOFTWARE RELIABILITY GROWTH USING A RECORD VALUE STATISTICS

  • Choi, Ki-Heon;Kim, Hee-Cheul
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.243-252
    • /
    • 2001
  • The points of failure of a decomposition process are defined to be the union of the points of failure from two component point processes for software reliability systems. Because sampling from the likelihood function of the decomposition model is difficulty, Gibbs Sampler can be applied in a straightforward manner. A Markov Chain Monte Carlo method with data augmentation is developed to compute the features of the posterior distribution. For model determination, we explored the prequential conditional predictive ordinate criterion that selects the best model with the largest posterior likelihood among models using all possible subsets of the component intensity functions. A numerical example with a simulated data set is given.

Development of the Continuous-Time HGDM with Binomial Sensitivity Factor (이항 반응 계수를 가진 연속 시간형 HGDM의 개발)

  • Park, Joong-Yang;Kim, Seong-Hee;Park, Jae-Heong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3490-3499
    • /
    • 1999
  • The hyper-geometric distribution software reliability growth model (HGDM) was recently developed and successfully applied to the problem of estimating the number of initial faults residual in a software at the beginning of the test-and-debug phase. Though the HGDM is a time-domain software reliability growth model(SRGM), it is not possible to compare the HGDM with other time-domain SRGMs. Furthermore the usual software reliability can not be computed. These drawbacks are derived from fact that the HGDM is not described in terms of the execution time. Thus we develop a continuous-time HGDM with binomial sensitivity factor in order to remove these drawbacks. Statistical characteristics of the suggested model are studied and its applicability is then examined by analyzing real test data sets. It is empirically shown that the continuous-time HGDM with binomial sensitivity factor can be used as an alternative to the current HGDM.

  • PDF

A Study of Infinite Failure NHPP Software Reliability Growth Model base on Record Value Statistics with Gamma Family of Lifetime Distribution (수명분포가 감마족인 기록값 통계량에 기초한 무한고장 NHPP 소프트웨어 신뢰성장 모형에 관한 비교 연구)

  • Kim, Hee-Cheul;Sin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.6 no.3
    • /
    • pp.145-153
    • /
    • 2006
  • Infinite failure NHPP models for a record value satisfies mode proposed in the literature exhibit either monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, propose comparative study of software reliability model using Erlang distribution, Rayleigh and Gumbel distribution. Equations to estimate the parameters using maximum likelihood estimation of infinite failure NHPP model based on failure data collected in the form of interfailure times are developed. For the sake of proposing distribution, we used to the special pattern. Analysis of failure data set using arithmetic and Laplace trend tests, goodness-of-fit test, bias tests is presented.

  • PDF

The Study for NHPP Software Reliability Growth Model based on Exponentiated Exponential Distribution (지수화 지수 분포에 의존한 NHPP 소프트웨어 신뢰성장 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.9-18
    • /
    • 2006
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the exponentiated exponential distribution reliability model, which maked out efficiency substituted for gamma and Weibull model(2 parameter shape illustrated by Gupta and Kundu(2001) Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE, AIC statistics and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using NTDS data set for the sake of proposing shape parameter of the exponentiated exponential distribution was employed. This analysis of failure data compared with the exponentiated exponential distribution model and the existing model (using arithmetic and Laplace trend tests, bias tests) is presented.

  • PDF

Analysis of Failutr Count Data Based on NHPP Models (NHPP모형에 기초한 고장 수 자료의 분석)

  • Kim, Seong-Hui;Jeong, Hyang-Suk;Kim, Yeong-Sun;Park, Jung-Yang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.395-400
    • /
    • 1997
  • An important quality characteristic of a software reliability.Software reliablilty growh models prvied the tools to evluate and moniter the reliabolty growth behavior of the sofwate during the testing phase Therefore failure data collected during the testing phase should be continmuosly analyzed on the basis of some selected software reliability growth models.For the cases where nonhomogeneous Poisson proxess models are the candiate models,we suggest Poisson regression model, which expresses the relationship between the expeted and actual failures counts in disjonint time intervals,for analyzing the failure count data.The weighted lest squares method is then used to-estimate the paramethers in the parameters in the model:The resulting estimators are equivalent to the maximum likelihood estimators. The method is illustrated by analyzing the failutr count data gathered from a large- scale switchong system.

  • PDF

The Study for NHPP Software Reliability Growth Model based on Burr Distribution (Burr 분포를 이용한 NHPP소프트웨어 신뢰성장모형에 관한 연구)

  • Kim, Hee-Cheul;Park, Jong-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.514-522
    • /
    • 2007
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this parer, Goel-Okumoto and Yamada-Ohba-Osaki model was reviewed, proposes the Burr distribution reliability model, which making out efficiency application for software reliability. Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE, AIC statistics and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using real data set for the sake of proposing shape parameter of the Burr distribution was employed. This analysis of failure data compared with the Burr distribution model and the existing model(using arithmetic and Laplace trend tests, bias tests) is presented.