• Title/Summary/Keyword: Software design

Search Result 7,194, Processing Time 0.034 seconds

A Study on Software Based Fault-Tolerance Techniques for Flight Control Computer (비행조종컴퓨터 소프트웨어 기반 고장허용 설계 기법 연구)

  • Yoon, Hyung-Sik;Kim, Yeon-Gyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.256-265
    • /
    • 2016
  • Software based fault tolerance techniques are designed to allow a system to tolerate software faults in the system. Fault tolerance techniques are divided into two groups : software based fault tolerance techniques and hardware based fault tolerance techniques. We need a proper design method according to characteristics of the system. In this paper, the concepts of software based fault tolerance techniques for Dual Flight Control Computer are described. For software based fault tolerance design, we classified software failure, designed a way for failure detection and the way of recovery. Eventually the effectiveness of software based fault tolerance techniques was verified through the Software Test Environment(STE).

Probability-based durability design software for concrete structures subjected to chloride exposed environments

  • Shin, Kyung-Joon;Kim, Jee-Sang;Lee, Kwang-Myong
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.511-524
    • /
    • 2011
  • Although concrete is believed to be a durable material, concrete structures have been degraded by severe environmental conditions such as the effects of chloride and chemical, abrasion, and other deterioration processes. Therefore, durability evaluation has been required to ensure the long term serviceability of structures located in chloride exposed environments. Recently, probability-based durability analysis and design have proven to be reliable for the service-life predictions of concrete structures. This approach has been successfully applied to durability estimation and design of concrete structures. However, currently it is difficult to find an appropriate method engineers can use to solve these probability-based diffusion problems. In this paper, computer software has been developed to facilitate probability-based durability analysis and design. This software predict the chloride diffusion using the Monte Carlo simulation method based on Fick's second law, and provides durability analysis and design solutions. A graphic user interface (GUI) is adapted for intuitive and easy use. The developed software is very useful not only for prediction of the service life but for the durability design of the concrete structures exposed to chloride environments.

Evaluating the performance AASHTOWare's mechanistic-empirical approach for roller-compacted concrete roadways

  • Emin Sengun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.445-469
    • /
    • 2024
  • The Federal Highway Administration (FHWA) has recommended the use of AASHTOWare Pavement Mechanistic-Empirical Design (PMED) software for Roller-Compacted Concrete (RCC) pavement design, but specific calibration for RCC is missing. This study investigates the software's capacity to predict the long-term performance of RCC roadways within the framework of conventional concrete pavement calibration. By reanalyzing existing RCC projects in several U.S. states: Colorado, Arkansas, South Carolina, Texas, and Illinois, the study highlights the need for specific calibration tailored to the unique characteristics of RCC. Field observations have emphasized occurrence of early distresses in RCC pavements, particularly transverse-cracking and joint-related issues. Despite data challenges, the AASHTOWare PMED software exhibits notable correlation between its long-term predictions and actual field performance in RCC roadways. This study stresses that RCC applications with insufficient joint spacing and thickness are prone to premature cracking. To enhance the accuracy of RCC pavement design, it is essential to discuss the inclusion of RCC as a dedicated rigid pavement option in AASHTOWare PMED. This becomes particularly crucial when the rising popularity of RCC roadways in the U.S. and Canada is considered. Such an inclusion would solidify RCC as a viable third option alongside Jointed Plain Concrete Pavements (JPCP) and Continuously Reinforced Concrete Pavements (CRCP) for design and deployment of rigid pavements. The research presents a roadmap for future calibration endeavors and advocates for the integration of RCC pavement as a distinct pavement type within the software. This approach holds promise for achieving more precise RCC pavement design and performance predictions.

KEY TECHNIQUES IN DEVELOPMENT OF VEHICLE GLASS DROP DESIGN SYSTEM

  • Liu, B.;Jin, C.N;Hu, P.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.327-335
    • /
    • 2007
  • A new optimization scheme and some key techniques are proposed in the development of a vehicle glass drop design software system. The key issues of the design system are how to regenerate the glass surface and make the vehicle glass drop down along the glass channels. To resolve these issues, a parameterized model was created at first, in which the optimizing method and Knowledge Fusion techniques were adopted the optimized process was then written into the glass drop design system by coding with C language and UGS/Open Application Programme Interface functions etc. Therefore, the designer or engineer can simulate the process of glass dropping along the channels to assess the potential interference between glass and door accessory by using this software system. All of the testing results demonstrate the validity of the optimizing scheme, and the parametric design software effectively solves the key issues on development of the door accessory package.

Development of Design Technology of Turbine Bearings for Power Plants (발전설비용 터빈베어링의 설계 기술 개발)

  • 하현천;양승헌;변형현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.253-259
    • /
    • 1997
  • A software for design of turbine bearings has been developed based on both the theoretical analysis and experimental investigation. Static and dynamic performance, i.e. load capacity, frictional loss, temperature distribution, stiffness and damping coefficients, stability etc., can be obtained by using this software taking into account the effects of three dimensional variation of lubricant viscosity, turbulence and inlet pressure. A performance test rig was developed by self-design and technology, which was used to verify static and dynamic characteristics and to investigate the proper boundary conditions for theoretical analysis. Consequently HANJUNG has developed the self-design technology for design of turbine bearings for power plants.

  • PDF

Compact Software Design and Implementation of IEEE802.15.4 and ZigBee

  • Thai, Pham Ngoc;Que, Victoria;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.835-844
    • /
    • 2008
  • ZigBee devices are limited in resources especially on power and computational capacity but also require real-time operation at MAC layer. Therefore, it is important to take those requirement into consideration of system software design. In this paper, we proposed a compact system software design to support simultaneously ZigBee and IEEE802.15.4. The design strictly respects the resource and real-time constraints while being optimized for specific functions of both Zigbee and IEEE802.15.4. Various evaluations are done to show significant metrics of our design.

  • PDF

Development of a Thermal Design Software for the Heat Recovery Steam Generator of Combined Cogeneration Systems (열병합 복합발전시스템용 폐열회수 보일러 열설계 소프트웨어 개발 연구)

  • Kim, T.K.;Oh, S.D.;Kwon, Y.H.;Seo, S.H.;Kim, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.726-731
    • /
    • 2001
  • A thermal design software is developed for the heat recovery steam generator(HRSG) of combined cogeneration systems. The heat transfer is calculated by using the element method to account for the varying thermal properties across the heat transfer elements. The circulation balance is computed for the evaporator to accurately estimate the steam generation rate and to check the proper circulation of the boiler water through the tubes. The software developed can be used to simulate HRSG systems with various combinations of auxiliary burner, wall superheater, superheater, reheater, evaporator, and economizer. Systems with several different combinations of the system components are successfully tested. And it is concluded that the developed software can be used for the design of heat recovery steam generators with various combinations of heat transfer components.

  • PDF

Software Pipeline-Based Partitioning Method with Trade-Off between Workload Balance and Communication Optimization

  • Huang, Kai;Xiu, Siwen;Yu, Min;Zhang, Xiaomeng;Yan, Rongjie;Yan, Xiaolang;Liu, Zhili
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.562-572
    • /
    • 2015
  • For a multiprocessor System-on-Chip (MPSoC) to achieve high performance via parallelism, we must consider how to partition a given application into different components and map the components onto multiple processors. In this paper, we propose a software pipeline-based partitioning method with cyclic dependent task management and communication optimization. During task partitioning, simultaneously considering computation load balance and communication optimization can cause interference, which leads to performance loss. To address this issue, we formulate their constraints and apply an integer linear programming approach to find an optimal partitioning result - one that requires a trade-off between these two factors. Experimental results on a reconfigurable MPSoC platform demonstrate the effectiveness of the proposed method, with 20% to 40% performance improvements compared to a traditional software pipeline-based partitioning method.

Improvement of Pattern Oriented Software Architecture Design Approach with Empirical Design of USN Middleware (USN 미들웨어 설계사례를 통한 패턴지향 아키텍처 설계방법의 개선)

  • Kung, Sang-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.11
    • /
    • pp.1-8
    • /
    • 2007
  • The Sensor Network enables many distributed systems to be unmanned and automated by using of diverse sensors as well as wireless communication technologies. One of major enabling technologies for the sensor network is the USN middleware which plays the role of collecting and analyzing of measurements of sensors and controlling of the environments. The paper deals with the fungus cultivating environment based on Sensor Networks. Especially, we focus on the design of USN middleware for the embedded system, and explain how to design software architecture in terms of architectural patterns. In this design process, the improvement of methodology for pattern-oriented architecture design is proposed and the quality attributes for the architecture design is newly classified and suggested for the reference of software architecture design.

TUTUM Easy-seismic: Development of a Seismic Design Automation Software for Building Fire Protection Systems (TUTUM Easy-seismic: 소방시설 내진설계 자동화 소프트웨어 개발)

  • Oh, Chang-Soo;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.140-148
    • /
    • 2019
  • In line with the "mandatory seismic design of fire protection facilities," development of design automation software is indispensable for improving the reliability and efficiency of seismic design. The seismic design automation software developed in this study is an automated S/W for seismic design of fire-fighting facilities, and functions such as automatic arrangement of anti-shake braces according to Korea National Fire Agency's Seismic Design Standards for fire-fighting facilities, output of seismic bracing calculation bills and automatic quantities counting. In addition, the seismic design automation software not only reduces the work speed by three times compared to the manual design of the designer, but also improves the reliability of the design by reducing the human error related to the design quantity such as the brace. In addition, in the seismic design method of fire protection facilities that have been approached conservatively, it was possible to perform the optimal seismic design by using computer algorithms for at least in the use of braces.