• Title/Summary/Keyword: Software Reliability

Search Result 1,505, Processing Time 0.028 seconds

Software Fault Detection and Removal Effort-based Reliability Estimation Model (소프트웨어 결함 발견 및 제거 노력 기반 신뢰성 추정 모델)

  • Kang, Myung-Muk;Gu, Tae-Wan;Baik, Jong-Moon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.536-547
    • /
    • 2010
  • Relative importance and complexity of recent software is getting increased because the software is needed to provide considerable amount of functions and high performance. Therefore, developing reliable software is importantly issued. In order to develop reliable software, it is necessary to manage software reliability at the early phases, but most reliability estimation models are used at system or operational test phases. In order to develop highly reliable software, it is necessary to manage software reliability at the early test phases based on characteristic of the phases that is developers and testers are not separated and developers perform test and debug activities together. Therefore, a new reliability estimation model considering test and debug time together is necessarily needed. In this paper, we propose a new reliability estimation model to manage reliability of individual units from the early test phases and in order to show how to fit the model to actual data and usefulness, we collected industrial data and used it for the experiment.

The Case Study on Application of Software Reliability Analysis Model by Utilizing Failure History Data of Weapon System (무기체계의 고장 이력 데이터를 활용한 소프트웨어 신뢰도 분석 모델 적용 사례 연구)

  • Cho, Ilhoon;Hwang, Seongguk;Lee, Ikdo;Park, Yeonkyeong;Lee, Junghoon;Shin, Changhoon
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.296-304
    • /
    • 2017
  • Purpose: Recent weapon systems in defense have increased the complexity and importance of software when developing multifunctional equipment. In this study, we analyze the accuracy of the proposed software reliability model when applied to weapon systems. Methods: Determine the similarity between software reliability analysis results (prediction/estimation) utilizing data from developing weapon systems and system failures data during operation of weapon systems. Results: In case of a software reliability prediction model, the predicted failure rate was higher than the actual failure rate, and the estimation model was consistent with actual failure history data. Conclusion: The software prediction model needs to adjust the variables that are appropriate for the domestic weapon system environment. As the reliability of software is increasingly important in the defense industry, continuous efforts are needed to ensure accurate reliability analysis in the development of weapon systems.

Estimation of Software Reliability with Multiple Errors (다중오류들을 갖는 소프트웨어 신뢰성의 추정)

  • Lee, In-Suk;Jung, Won-Tae;Jeong, Hye-Jeong
    • Journal of Korean Society for Quality Management
    • /
    • v.23 no.3
    • /
    • pp.57-68
    • /
    • 1995
  • In this paper, we consider possibility that the multiple errors occur in each testing stage. At present, software reliability modeling is considered as a part of software reliability quality assurance in software engineering. However they dealt with the software growth model for the single error debugging at each testing stage until now. Hence it is necessary to study software reliability with multiple errors debugging. Therefore we propose software reliability growth modeling and estimate the parameters in the proposed software reliability growth model for the multiple errors debugging at each testing stage.

  • PDF

A Study on the Reliability of Software for Railway Signalling Systems (철도신호제어용 소프트웨어 신뢰도 모델링에 관한 연구)

  • Lee, Jae-Ho;Park, Young-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.601-605
    • /
    • 2006
  • Reliability of the Railway signaling system which is safety critical is determined by reliability of hardware and software. Reliability of hardware is easily predicted and demonstrated through lots of different studies and environmental tests, while that of software is estimated by the iterative test outcomes so estimates of reliability will depend on the inputs. Combinations of inputs to and outputs from the software may be mostly combinatoric and therefore all the combinations could not be tested. As a result, it has been more important to calculate reliability by means of a simpler method. This paper identifies the reliability prediction equation applicable to reliability prediction for railway signaling system software, and performs the simulation of onboard equipment of automatic train control for high speed train to review reliability prediction and validity.

An Application of Software Reliability Estimation Model on Weapon System (국내 무기체계 분야의 소프트웨어 신뢰성 추정 모델 적용 사례)

  • Bak, Da-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.178-186
    • /
    • 2020
  • In the domain of Korean weapon system development, issues about software reliability have become crucial factors when developing a weapon system. There is a process required for weapon system software development and management that includes certain activities required to improve the reliability of software. However, these activities are biased toward static and dynamic analyses of source code and do not include activities necessarily required by the international standard. IEEE std. 1633-2016 defines a process for software reliability engineering and describes software reliability estimation as an essential activity in the process. Software reliability estimation means that collecting defective data during the test and estimating software reliability by using the statistical model. Based on the estimated model, developers could estimate the failure rate and make comparisons with the objective failure rate to determine termination of the test. In this study, we collected defective data and applied reliability estimation models to analyze software reliability in the development of a weapon system. To achieve objective software reliability, we continuously tested our software and quantitatively calculated software reliability. Through the research, we hope that efforts to include activities described by the international standard will be carried out in the domain of Korean weapon system development.

An Effective Stopping Rule for Software Reliability Testing

  • Yoon, Bok-Sik
    • International Journal of Reliability and Applications
    • /
    • v.3 no.2
    • /
    • pp.81-90
    • /
    • 2002
  • The importance of the reliability of software is growing more and more as more complicated digital computer systems are used for real-time control applications. To provide more reliable software, the testing period should be long enough, but not unnecessarily too long. In this study, we suggest a simple but effective stopping rule which can provide just proper amount of testing time. We take unique features of software into consideration and adopt non-homogeneous Poisson process model and Bayesian approach. A numerical example is given to demonstrate the validity of our stopping rule.

  • PDF

Experiment design and human reliability in software quality control system

  • Park, Peom
    • Journal of Korean Society for Quality Management
    • /
    • v.20 no.2
    • /
    • pp.94-108
    • /
    • 1992
  • This study involves an experiment for the cognitive experiment design and the human reliability in software engineering. Its overall objectives are to analyze common-cause human domain error and reliability in human-software interaction. A laboratory study was performed to analyze software engineers' task behavior in software production and to identify software design factors contributing to the effects in common cause failure redundancy. Common-cause model and its function were developed, then the main experiment using programming experts was conducted in order to define a new cognitive paradigm, in the aspects of identification, pattern recognition, and behavior domain for human reliability and quality control in software development. The results and analytical procedures developed in this research can be applied to reliability improvement and cost reduction in software development for many applications. Results are also expected to provide guidelines for software engineering quality control and for more effective design of human-software interface system.

  • PDF

The Impact of the Competitiveness of Intermediate Software on Enterprise Results: a Case Study of Chinese Intermediate Software

  • Liu, Zi-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.123-129
    • /
    • 2018
  • The purpose of this paper is to draw a conclusion on the impact of intermediate software on enterprise results. In this paper, product innovation and product reliability are especially used as analytical factors. An exploratory analytical study is conducted on the competitiveness of intermediate software, in the hope of gaining a new understanding of the competitiveness of intermediate software. Data are analyzed using such quantitative analytical tools as SPSS and AMOS. Using reliability analysis, validity analysis and structural equation model analysis, the final results are achieved. According to the analysis results, we can draw the following conclusions: the competitiveness of intermediate software has a positive impact on the innovation of software products. The competitiveness of intermediate software doesn't have a positive impact on the reliability of software products. Product innovation has a positive impact on enterprise results. Product reliability also has a positive impact on enterprise results. By analyzing the conclusions, we can make certain suggestions and draw implications on the competitiveness of China's software industry.

A Study on the Property Analysis of Software Reliability Model with Shape Parameter Change of Finite Fault NHPP Erlang Distribution (유한고장 NHPP 어랑분포의 형상모수 변화에 따른 소프트웨어 신뢰성 모형의 속성 분석에 관한 연구)

  • Min, Kyung Il
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.4
    • /
    • pp.115-122
    • /
    • 2018
  • Software reliability has the greatest impact on computer system reliability and software quality. For this software reliability analysis, In this study, we compare and analyze the trends of the properties affecting the reliability according to the shape parameters of Erlang distribution based on the finite fault NHPP. Software failure time data were used to analyze software failure phenomena, the maximum likelihood estimation method was used for parameter estimation. As a result, it can be seen that the intensity function is effective because it shows a tendency to decrease with time when the shape parameters a = 1 and a = 3. However, the pattern of the mean value function showed an underestimation pattern for the true values when the shape parameters a = 1 and a = 2, but it was found to be more efficient when a = 3 because the error width from the true value was small. Also, in the reliability evaluation of the future mission time, the stable and high trend was shown when the shape parameters a = 1 and a = 3, but on the contrary, when a = 2, the reliability decreased with the failure time. Through this study, the property of finite fault NHPP Erlang model according to the change of shape parameter without existing research case was newly analyzed, and new research information that software developers can use as basic guideline was presented.

Development of Reliability Measurement Method and Tool for Nuclear Power Plant Safety Software (원자력 안전 소프트웨어 대상 신뢰도 측정 방법 및 도구 개발)

  • Lingjun Liu;Wooyoung Choi;Eunkyoung Jee;Duksan Ryu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.227-235
    • /
    • 2024
  • Since nuclear power plants (NPPs) increasingly employ digital I&C systems, reliability evaluation for NPP software has become crucial for NPP probabilistic risk assessment. Several methods for estimating software reliability have been proposed, but there is no available tool support for those methods. To support NPP software manufacturers, we propose a reliability measurement tool for NPP software. We designed our tool to provide reliability estimation depending on available qualitative and quantitative information that users can offer. We applied the proposed tool to an industrial reactor protection system to evaluate the functionality of this tool. This tool can considerably facilitate the reliability assessment of NPP software.