• Title/Summary/Keyword: Software Prediction

Search Result 1,043, Processing Time 0.031 seconds

Evolutionary Computing Driven Extreme Learning Machine for Objected Oriented Software Aging Prediction

  • Ahamad, Shahanawaj
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.232-240
    • /
    • 2022
  • To fulfill user expectations, the rapid evolution of software techniques and approaches has necessitated reliable and flawless software operations. Aging prediction in the software under operation is becoming a basic and unavoidable requirement for ensuring the systems' availability, reliability, and operations. In this paper, an improved evolutionary computing-driven extreme learning scheme (ECD-ELM) has been suggested for object-oriented software aging prediction. To perform aging prediction, we employed a variety of metrics, including program size, McCube complexity metrics, Halstead metrics, runtime failure event metrics, and some unique aging-related metrics (ARM). In our suggested paradigm, extracting OOP software metrics is done after pre-processing, which includes outlier detection and normalization. This technique improved our proposed system's ability to deal with instances with unbalanced biases and metrics. Further, different dimensional reduction and feature selection algorithms such as principal component analysis (PCA), linear discriminant analysis (LDA), and T-Test analysis have been applied. We have suggested a single hidden layer multi-feed forward neural network (SL-MFNN) based ELM, where an adaptive genetic algorithm (AGA) has been applied to estimate the weight and bias parameters for ELM learning. Unlike the traditional neural networks model, the implementation of GA-based ELM with LDA feature selection has outperformed other aging prediction approaches in terms of prediction accuracy, precision, recall, and F-measure. The results affirm that the implementation of outlier detection, normalization of imbalanced metrics, LDA-based feature selection, and GA-based ELM can be the reliable solution for object-oriented software aging prediction.

Early Software Quality Prediction Using Support Vector Machine (Support Vector Machine을 이용한 초기 소프트웨어 품질 예측)

  • Hong, Euy-Seok
    • Journal of Information Technology Services
    • /
    • v.10 no.2
    • /
    • pp.235-245
    • /
    • 2011
  • Early criticality prediction models that determine whether a design entity is fault-prone or not are becoming more and more important as software development projects are getting larger. Effective predictions can reduce the system development cost and improve software quality by identifying trouble-spots at early phases and proper allocation of effort and resources. Many prediction models have been proposed using statistical and machine learning methods. This paper builds a prediction model using Support Vector Machine(SVM) which is one of the most popular modern classification methods and compares its prediction performance with a well-known prediction model, BackPropagation neural network Model(BPM). SVM is known to generalize well even in high dimensional spaces under small training data conditions. In prediction performance evaluation experiments, dimensionality reduction techniques for data set are not used because the dimension of input data is too small. Experimental results show that the prediction performance of SVM model is slightly better than that of BPM and polynomial kernel function achieves better performance than other SVM kernel functions.

RISKY MODULE PREDICTION FOR NUCLEAR I&C SOFTWARE

  • Kim, Young-Mi;Kim, Hyeon-Soo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.663-672
    • /
    • 2012
  • As software based digital I&C (Instrumentation and Control) systems are used more prevalently in nuclear plants, enhancement of software dependability has become an important issue in the area of nuclear I&C systems. Critical attributes of software dependability are safety and reliability. These attributes are tightly related to software failures caused by faults. Software testing and V&V (Verification and Validation) activities are hence important for enhancing software dependability. If the risky modules of safety-critical software can be predicted, it will be possible to focus on testing and V&V activities more efficiently and effectively. It should also make it possible to better allocate resources for regulation activities. We propose a prediction technique to estimate risky software modules by adopting machine learning models based on software complexity metrics. An empirical study with various machine learning algorithms was executed for comparing the prediction performance. Experimental results show SVMs (Support Vector Machines) perform as well or better than the other methods.

Semi-supervised Software Defect Prediction Model Based on Tri-training

  • Meng, Fanqi;Cheng, Wenying;Wang, Jingdong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4028-4042
    • /
    • 2021
  • Aiming at the problem of software defect prediction difficulty caused by insufficient software defect marker samples and unbalanced classification, a semi-supervised software defect prediction model based on a tri-training algorithm was proposed by combining feature normalization, over-sampling technology, and a Tri-training algorithm. First, the feature normalization method is used to smooth the feature data to eliminate the influence of too large or too small feature values on the model's classification performance. Secondly, the oversampling method is used to expand and sample the data, which solves the unbalanced classification of labelled samples. Finally, the Tri-training algorithm performs machine learning on the training samples and establishes a defect prediction model. The novelty of this model is that it can effectively combine feature normalization, oversampling techniques, and the Tri-training algorithm to solve both the under-labelled sample and class imbalance problems. Simulation experiments using the NASA software defect prediction dataset show that the proposed method outperforms four existing supervised and semi-supervised learning in terms of Precision, Recall, and F-Measure values.

Software Reliability Prediction Using Predictive Filter (예측필터를 이용한 소프트웨어 신뢰성 예측)

  • Park, Jung-Yang;Lee, Sang-Un;Park, Jae-Heung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2076-2085
    • /
    • 2000
  • Almost all existing software reliability models are based on the assumptions of he software usage and software failure process. There, therefore, is no universally applicable software reliability model. To develop a universal software reliability model this paper suggests the predictive filter as a general software reliability prediction model for time domain failure data. Its usefulness is empirically verified by analyzing the failure datasets obtained from 14 different software projects. Based on the average relative prediction error, the suggested predictive filter is compared with other well-known neural network models and statistical software reliability growth models. Experimental results show that the predictive filter generally results in a simple model and adapts well across different software projects.

  • PDF

Software Vulnerability Prediction System Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 소프트웨어 취약 여부 예측 시스템)

  • Choi, Minjun;Kim, Juhwan;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.3
    • /
    • pp.635-642
    • /
    • 2018
  • In the Era of the Fourth Industrial Revolution, we live in huge amounts of software. However, as software increases, software vulnerabilities are also increasing. Therefore, it is important to detect and remove software vulnerabilities. Currently, many researches have been studied to predict and detect software security problems, but it takes a long time to detect and does not have high prediction accuracy. Therefore, in this paper, we describe a method for efficiently predicting software vulnerabilities using machine learning algorithms. In addition, various machine learning algorithms are compared through experiments. Experimental results show that the k-nearest neighbors prediction model has the highest prediction rate.

A Prediction for Manpower Profile of Software Development Using Predictive Filter (예측필터를 이용한 소프트웨어 개발 인력분포 예측)

  • Lee Sang-Un
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.416-422
    • /
    • 2006
  • Most of the existing statistical models of software manpower profile are based on the assumptions of the usage and development process. Therefore, there is no universally applicable estimation and prediction model. To develop a prediction model, this paper suggests the predictive filter as a prediction model for software manpower profile. Firs of all, we investigate the software manpower profile and we suggest the input-output of predictive filter and method for parameter determination. Then, its usefulness is empirically verified by analyzing the actual data obtained from the software projects. Based on the average relative prediction error and Pred(0.25), the suggested predictive filter is compared with other well-known statistical estimation models. As a result, the predictive filter generally has a simple structure and on the other hand, it adapts the software manpower profile very well.

Software Quality Classification using Bayesian Classifier (베이지안 분류기를 이용한 소프트웨어 품질 분류)

  • Hong, Euy-Seok
    • Journal of Information Technology Services
    • /
    • v.11 no.1
    • /
    • pp.211-221
    • /
    • 2012
  • Many metric-based classification models have been proposed to predict fault-proneness of software module. This paper presents two prediction models using Bayesian classifier which is one of the most popular modern classification algorithms. Bayesian model based on Bayesian probability theory can be a promising technique for software quality prediction. This is due to the ability to represent uncertainty using probabilities and the ability to partly incorporate expert's knowledge into training data. The two models, Na$\ddot{i}$veBayes(NB) and Bayesian Belief Network(BBN), are constructed and dimensionality reduction of training data and test data are performed before model evaluation. Prediction accuracy of the model is evaluated using two prediction error measures, Type I error and Type II error, and compared with well-known prediction models, backpropagation neural network model and support vector machine model. The results show that the prediction performance of BBN model is slightly better than that of NB. For the data set with ambiguity, although the BBN model's prediction accuracy is not as good as the compared models, it achieves better performance than the compared models for the data set without ambiguity.

Software Defect Prediction Based on SAINT (SAINT 기반의 소프트웨어 결함 예측)

  • Sriman Mohapatra;Eunjeong Ju;Jeonghwa Lee;Duksan Ryu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.5
    • /
    • pp.236-242
    • /
    • 2024
  • Software Defect Prediction (SDP) enhances the efficiency of software development by proactively identifying modules likely to contain errors. A major challenge in SDP is improving prediction performance. Recent research has applied deep learning techniques to the field of SDP, with the SAINT model particularly gaining attention for its outstanding performance in analyzing structured data. This study compares the SAINT model with other leading models (XGBoost, Random Forest, CatBoost) and investigates the latest deep learning techniques applicable to SDP. SAINT consistently demonstrated superior performance, proving effective in improving defect prediction accuracy. These findings highlight the potential of the SAINT model to advance defect prediction methodologies in practical software development scenarios, and were achieved through a rigorous methodology including cross-validation, feature scaling, and comparative analysis.

Defect Severity-based Defect Prediction Model using CL

  • Lee, Na-Young;Kwon, Ki-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.9
    • /
    • pp.81-86
    • /
    • 2018
  • Software defect severity is very important in projects with limited historical data or new projects. But general software defect prediction is very difficult to collect the label information of the training set and cross-project defect prediction must have a lot of data. In this paper, an unclassified data set with defect severity is clustered according to the distribution ratio. And defect severity-based prediction model is proposed by way of labeling. Proposed model is applied CLAMI in JM1, PC4 with the least ambiguity of defect severity-based NASA dataset. And it is evaluated the value of ACC compared to original data. In this study experiment result, proposed model is improved JM1 0.15 (15%), PC4 0.12(12%) than existing defect severity-based prediction models.