2076 StxAEReetE = A A R7=E0007)

2g AL 9
razd oAz mE AR, 1le] T

He FESAT AvE A3L6% BE 44T rdE

cxEalol A4 4% TRER A% S AT B A% Aol AMAGG 1 4% 42AeE Ay
; : "

Software Reliability Prediction Using Predictive Filter

Joong-Yang Park'- Sang-Un Lee™ . Jac-Heung Park''!

ABSTRACT

Almost all exusting software reliability models are based on the assumptons of the soflware usage and software failure

process There. therefore. is no umversally apphicable software rcliabilily model. To develop a umversal software relabihily
model, this paper suggests the prediwctive {ilter as a general software rehability prediclion model Tor time domam Fagure data
[ls usefulness 15 empncally verfied by analyzing the falure data sels oblained from 14 different software projects. Based
on the average 1elative predhclion error, the suggested predictive filter is compared with other well-linown neural network
models and statishical software rehability growih madels Experimental resulls show thal the predictive Niter generally resulis

in a simple model and adapts well across dilferent soflware projecls

1. Introduction

In recent vears, there 15 a growing use of compuler
systems and software gystems have been most im-
portant parts of many complex and cribcal computer
syslems Since failures of a software system could pro-
duce severe consequences in lerms of human lite, envi-
ronment impact or economical losses, software systems
are required o be sufficiently reliable for therr miended

purposes. A software svsiem is said to be reliable if

Ay £oas @
B Qa8 R e
Axtldn e @
P00 24 159, HAIEE 20004 7 8

X
1
Ht 7d

fﬁﬁﬂ
A el o

A

it performs falure-1res operation [or a specific exposure
period under a wide vanety of usage environments and
operations. To many cuslomers, software reliability is
one af the most important aspecls of software gqualily
Measurement, of software rehability mncludes relamlity
estimation and relialnhty prediction activilies. A number
of soflware reliability models has been developed for
estimating and predicting the soltware reliability from
the falure data chtawned during testing and aperational
phaszes, Predictability of a software relabihty model 15
the capabihty of the model to predict future behaviors
Irom present and past failure behaviors. Ramamoorthy

and Bastam [16] classifies soltware reliahility madels

according to the development phases of software life-
cycle, while Geel [B] divides them according to the
natwre of failure process inlo thme-berween-lailures
models, failure-count models, lault seeding models and
input domain—hased mocels. We consider soliware re-
liability models applicable in the testing and debugeing
phase, Since fault corrections are necessary in the test-
ing and debugging phase, software reliability growth
models (SRGWMs) taking fault corrections mto account
are mainly uzed in this phase. Most of time-between-
[ailures madels and failure- count models belong to the
class of SRGMs. Such SEGMs offer overall reliability
assessment and prediction and are alse used in deter—
mining an appropriate release bme SRGMs usually
deline the software reliability as

Rr= Pr{no faflure occurs withwn [0, T]),
rd

/

where T is the exposure period whose time unit is the
calendar or execution time, [t 15 usvally assumed (hat

R follows a certain probabilily distnibubion, [or exam-
T
ple, Ry = exp (— fD z(z‘)df), where z(f is the Tailure

rate function. Once the failure rate function is estimated,
the expecled time to next farllure and expected mumber
of failures up to a certam specified time can be predicted
and then used as reliability measures.

Almost all exisning SRGMs are based on the
assumplions with respect (o the nature of software faults
and the stochastic hehavior of Falures. Thev mclude
several paramelers 1o reflect on vanous assumptions on
the sofiware development and usage crvironment. This
implies that there is no universally applicable SRGM
which can be trusted in all circumstances [3] Selection
of a particular SRGM is thus very important In practical
applicauons, Scveral approaches for selecting the hest
SRGM were suggested by Abdel- Ghaly, Chan and
Littlewood [1] and Brocklehurst, Chan, Litdewood and
Snell [3] However, it 1s still desirable to develop soft-
ware reliability models that do nol require any as-
sumptions with respect to the development and usage
environment, I we have a system that develops iLg own
madel based on the past failure history of software

U=EE= 0Zeh ~ZEM0 HEl o= 2077

system, such assumptions can be climinated. Thus a
new approach usmg neural networks has been intro—
duced by Karunanithi, Whitley and Malawa [7. 8], The
neural network requires only fanlure history as input and
no assumptions are made a prion. Karunamth, Whitley
and Malaiya [7, 8] evaluated the prediclive accuracy of
Teedlorward networks (FFNs) and Jordan networks and
then compared with several well-known statistical
SRGMs for the lailure count data, Parly, Lee and Parl
[14] also performed a similar research for the failure time
data

In this paper we siggest a predictive [lter for pre-
dicting soflware reliability based on the e domain
lailure data (hoth fallure count data znd [ailure time
data} The proposed predictive filter is dertved from the
adaptive filter. The prediclive filier 15 simple and its
performance 1s better than those of the neural networks
mentioned in the previous paragraph. Scction 2 first
briefly reviews some relaled works The predictive filter
and corresponding lraining regimes arc presented in
Seclion 3, Secihon 4 investigates its perfermance empir—
ically and compares with other neural networlk models
and SRGMs, Performance evaluations and comperisons
are condncted by compuling the next-siep prediciion
error Tfnally conciusions are presented mn Section o

2. Related Works and Maotjvation

An important feature of nevral nelworks is the ability
0 leam from thelr environmenl and ithrough such
learming improvement in performance to some extent 1s
achieved, {Refer to Lippman [9] [or currently avalahle
neural networl models and leaming procedures.) Thus
newal networls have been applied to parameter es—
rimation and predicuon of future outcomeas. Two well-
known classes suitable for prediclon are FFNs and
recurrent, nelwarks However, onlv a few applications
of neural networks to software reliability prediction
have appeared n the liferaturc. Karunanih, Whitley
and Malaya [7, 8] modeled software relabiiy growth
wilh neural nelworks, They have shown that FENs and

partial recurrent networks (Elman and Jordan nel-

2078 S=EEMRE =RA MTE MT=E0N07)

worls) can be applied to soltware reliability prediction.

Supposc that pairs (¢, w2}, 1=1,2, -, 7 are gath-
ered from lhe soflware lesling, where s, denotes the
cumulative number of failures found up to time #. A
data consishing of pairs {£, #2,) 15 called the [ailure
count dala. Kanunanithi, Whitley and Malaiyva [7,8]
studied FFNg and partial recurrent networks for pre—
dicting w4, $=1,2, assuming that {z,, m), i=
1,2,+-, [are avalable [or training. The following two

lramning regimes were congidered

(1) Generalization training : each input ¢, 15 asso—
ciated with target s, .
(2) Prediction traimng : each inpul #-; is associated

with target s, .

The predictive accuracy of FFNs and partial re-
current networks were evaluated and then compared
with those of several well-lknown statistical SRGMs.
The data sets collected [rom 14 dilferent softwarc
systems were used [or evaluating and comparing the
predictive accuracy Briel description of the 14 dala sets
(Referred to as Dalal, DataZ2, -
Whitley and Malaya [8] and herein.) 15 reproduced m
<Table 1. They have shown that FFMNs and partial

recurrent networks adapt well across different data sets

m Karunanith,

and exhibit a better end-point predictive accuracy.
However, they were unable to make any strong con-
clusions about the relalive advantages for next-step
predictions,

The observalion tume intervals, ¢ — ¢, are variable
for Datad and Datab, but constanl [or other data sets.
Another noteworthy point is that Data2. Datall, Datai2.
and Datal3 consist of the pairs (7, s5,),i=1,2, - where

¢ is the failure sequence number and s, is the :1lh
failure time. Such data sets are called the failure time
data. Karunamithi, Whitley and Malaiya [7, 8] presented
the failure times as input to the network and then
assaciated them with corresponding failure sequence
number as target In the case of failure time data, the

[ailure times are the observations of stochastic lailure

{Table 1> Bnief Descripiion of 14 Data Sets

. | System | o
]?;‘::td Pﬁi S22 cﬂifuif Myl B Application
’ Loc Aoy
Dala Farlure Class Compnler
1] Lo Count Data 2 Project
Dataliy 1qi| o] FC | 136) 13| Realime Contro!
2 Time Data
Dala Falure . ~ i -
3 [14]] 40000 Count Data 46| 21 | On-hne Data Entry
Dala - Tailure - | Datahuse
4 17 131700 Cowl Data 38| Applicalion
Dala - Failure
. 9 Hardws
5 [| 33000 Coul. Dt 279(10| Hardware Control
Dala| |, Falore ., | Anphcation
2
] (A | 24080 Count Data a1 Software
DAt oy 1 erooo] . F2M° | s5| 109 Realume Control
7 Count Data
Dala Falure Meniloring and
2%
3 [18] | 200000 Count Data i) 1l Realime Conlrot
Data _ Failure Raulway
] [18] | 145000 Count Data % 1@ Inlerlocking
Data + Falure Monsloring and
10 [ie] .00 Court Data 156) 16 Realtime Conlrol
Data [allere
7 F ,
I [2] 10,000 Fme Dala 118| 118| Fhpht Dynanue
Data) 1 g PR el g0 prgin Dynarme
12 ’ [me Data)
Dala Failire
2 3 0 3t F /
13 [2] B0 Time Data 213| 213} Fhght Dynamc
Data not. Falure
f) i -
14 [12] lnown | Count Dita 266| 45 | Realtime Control

process. It 1s nol reasonable to analyze and predict the
{anlure sequence numbers, What we need to predict is
not the [ailure sequence number bul rather the slo-
chastic process producing the laiture times. Thereflore,
the ahove two training regimes are not appropriate for
the [ailure ime dala Park, Lee and Park [15] considered

FFNs and 4 training regumes [or the [ailure lime data.

(1) Each mpui ¢ 1& assoclated with targel x, .
(2} Iach inpul @ 15 associated wilh targel x,4q
(3} Each mpui 7 15 associated wilh targel s, .

(4} Tiach input ¢ 1s osscciated with larget §,4. .

Here x,=s5,—s,- [or i=1,2.-~. Training regimes
{1} and (3) are for generahizalion, while trainmng regimes
{2} and (4} are for prediction. It was empircally shown
thal FFiNs with training regimes (3) and (4} worl well

for software reliability prediction and their predictive
capability is not influenced much hy the training data
set size. The suggested approach was shown to be
robust to cutliers. However, more ldden neurons are
required Lhan the approach considered by Karunanithi,
Whitley and Malaiva [6, 71.

A pood predictive model should predict future
behavior well, compute uselul quantities, and be simple
and widely applicable. One of such neural networks is
the adaptive filter, The adaplive filter is simple and
expecled to provide gpond next-siep prediction, It has
been known for following (wo outstanding features :
the alnlity to learn systems wilh unknown parameters
and signals with unknown statistics, and the ability to
track an environmenl which is varving with time. Reler
Lo Widrow and Sterns [20] [or details of the adaplive
[ier. We will consider the adaptive filter as a candidale
network for soflware reliability prediction m the next

section,

3. Predictive Filter for Software Reliability
Prediction

An adaptive filter 1s crealed by combining a tapped
delay line (TDL) with an ADALINE (Adaptive Linear
Neuron Nelworl) [5]. The ADALINE network is similar
to the perceptron, but their {ransfer function is linear
rather than hard-limiting. This nefwark can only solve
linearly separable problems, To solve a nonlinear prob—
lems, we need 2 new component. the TDL, to make full

Input

{Fig. 1) Adaptive Filter

=
i
=}
E
L1

01ET AZESIH HE|A dlE 2079

use of the ADALINE network The adaptive filler can
automatically adapt in the face of environiment changes.

{(Fig 1) shows a simple descriplion of the adaptive filter,
g

in which x, is the mput signal at time /7, ¥;= :gu
wpx,—p+bis the corresponding ourpuf, 7 is the
number of delays, w,'s are adaplive weights, and 2
15 the bias (or threshold).

This network is usually referred to in the digital
signal processing field as a finite impulse response
{FIR} Ilter {also known as input-delay neural network).
This architecture has been used quile successfully in
a number of practical applicalions mclhuding speech
recognition and ume senes prediction [4], 1T we adjust
rthe adaplive weights in a way that the corresponding
outpat ¥, mztches as best as possible a desired srgnal
{target) y,, the adaplive [iller can predict the [uture
values of the signal. We thus use the network described
in (Fig 2) Ior the failure counl data. This network may
be called the predictive f(iller, which is a modilied
adaplive filter. Specific modifications are © (1} 4, is not
comnected to the linear neuron filter ; (2) errors are
computed and DBackpropagated to adjusl connection

weights.

Tuput rg

[y

EAdJusl weighis

d
A :Zwknq_k +b
kel
(Fg 2) Predictive Filter
The cumulative number of failures found up to £,

d
15 then predicted by, = ;l Wi,y &, which is a

linear eombination of #,_,, £=1,2, . 4. This implies

2080 St=EEME(E R =2 BT AT=20007)

that the predictive hlier prumarily aims the nexl-slep
predicion, However. il we use #, as the input signal
at time ¢ and m,_,'s as lhe corresponding delayed
signal s, we can obtain #,,, from the predictive filter,
Repetition of this procedure enables us to predict #,_ .
£=0,1,+ al lime ¢—1. At this time we should note
that the ohservation lime intervals, ¢,—¢,_,, are re—
quired o be constant for the apphcation of the above
predictive filter. On the other hand, we need (o replace
#, in {(Fig 2} wath s, for applying the prediciive filter
d

to the failure time data. Thal is, §,= El WS, _w+ b

and e, =s.—3,.

4. Prediction Experiments and Results

This section empirically studies predictive accuracy
of the predictive filter suggested in the previous section.
In order o provide reasonable comparisons and analy-
ses on the predictive accuracy of vanous models, it is
necessary to use as many dara sels as possible, Finding
a large collection of data sets from different scfiware
projects is not an easy task because many software
companias consider their products’ failure history as a
classified record. The data sets described in Section 2,
which were collecled from various soflware syslems
and development environments, arc used m our exper—
iment Dalal, Data3-10, and Datald are the failure count
data and DataZ, and Datall-13 are the failure time dala

In comparing difforent models, it is necessary to
quantify their prediction accuracy m lerms of some
meaningful measures, Three distinct approaches that
are very commoen m software reliabilily research com-
munity are goodness—ol-{il, next-step predictabilily,
and variable-term predictabahty [8, 10]. Using these
approaches, a lwo-component predictability measure
consisting of average relative prediclion ervor (AR)
and average bias (AB) was proposed hy Malaiva,
Karunanithi, and Verma [10] AE is a measure of how
well & model predicts tlrough the lest phase, and AB

is the general uas of the model In ihis paper, we use

the AE measure for next-siep predictability. For 14
different software projects, the nexl-step AE of pre—
dictive filter is computed and compared with those of
other well-linown neural networks and SRGMs sim-
ulated hy Karunaruthi, Whitley, and Malaiya [8] and
Parls, Lee, and Parls T15).

4.1 Case A ! Falure Count Data

Cenerally, we assume that the data set size 1s
sulficiently large when its size is larger than 30
{referred Lo stalishical field). Data set size, s, of Dalal,
Data3d-6, and Datal(are not large enough for the neural
network experiments, Furthermore the observalion time
intervals /,—#,_; of Datad and Datab are nol constant.
Therefore. the predictive accuracy of the predictive filter
evaluated for these data sets is cxpected o be low.
Nevertheless, we also performed experiments for Lhese
data scts [or the sake of reference.

Let { denote the training data set size. And » 1s the
prediction distance For example, »= 1 lor the next-
step precdiction and #= (s—) [or the end-point pre-
diclion For given number of delays o, the next-step

prediclion experiments proceed as follows :

Step (1) Seil I=4d
Step (2) Train each newral networle model hy using the
LMS {Least Mean Square errar) algariihm and

the trammng dala set my, weg, -, 2,
Step (3) For each trained network, predict 7 step a-
head cumulative mumber of failures 7,4, lor

j=1,2,--,+ and then compute correspending

relative prediction errors,
e, = mo,— M) #1000,

Step (4) Increase 7 by 1 and repeal Steps (2) and {3)
unhl f=n—1,

Step (5} Compule the average of e, over /.

The average of 2, aver { 15 dencted by ¢ , and
referred Lo as the AR, Karunanithi, Whilley and Malaiva

[7.8] considered the averages of e;; and e, ,—, over

[as the predictability measures, which correspond to
the next-step and snd-poinl prediclion errors, respec—
lvely. Since the precictive filter primarily aims the
nexi-siep prediclon, we will use e .. For SRGMs
@i,y is the cshmate of the expected number of [ailures
up to {4, obtained from #,, j=1,2,---,7 Then g,
and ., for SRGMs can be similarly obtained,

The most critical problem in implementing the pre-
dictive filter 15 1o determine the appropriate value of 4.
To find a sunilable value of &, we lollow a trial-and-
error approach. That ts, Steps (11-15) are performed for

#=0, 1, and the resulting 2.;'s are plotied
against €. An appropriate value of 7 is selected by
exarmning the plot. For cxample, (Fig, 3) shows the plot

of g., against 4 for Data’,

»l
12 o0
10.00]
8 00 i
fi 00 ['
I "
: .
4 00
b
!
A Ji i
zo0 §F o . LT R
d Eer Qﬁf&-ﬂ"f‘? " R g
000 —— el
0 10 =20 Jo 40 B0 w0 Y& BO 80 100

(Fig. 3} Plot of e., aganst & for Data?

Txamining (Fig 3), we find that e ; achieves ils
minimum when & » 70, However, it 1= apparent that
overfitling occurs when & 18 loo large. We thus con-
sider the cases where ¢ iz small. e |'s for d=1,8,
11—18, -

Since a simpler model is wsually desirable. we select

are practically comparabie Lo each other.

1 as an appropriate value of & (Fig. 4) shows mz, and
m, lov d= 1. <Table 2> shows selected values of

& for the 10 farlure count data sets. Using the values
of in <Table 2>, Steps (1)-(5) were performed [or
each data set.

The resulting 2 .;'s were presented and compared

wilh those of Karunanithi, Whitley and Malaya [8] i
<Takle 3> The numbers in parentheses are Lhe

corresponding ranks.

50

ol T S S S S R S S S R S U R
0 I PN DL H BN L O H D W

(Fig. 4) Plot of s, and m, for Datal (4=1)

{Tahle 2> Selected values of & for 10 fallure count data

gets
Dita Set Data| Data] Dala | Data | Data | Data | Data | Data | Data | Data
- 134578/ 9wlu]
Mumber of 5 .
Delaps 114211111311

Experiment results for the falure count data suggest
the followings -

{1) The prediciive Elter performs well when the date
set is large. {Data7-9) That is, the predictive filter
is cfficient for soflware reliability prediction
especially when the data set size 15 large .

(?) When the data sct size is small. all models seem
o have almost similar next-step prediction ac-
curacy The neural network models and SRGMs

20g2 stmEENCEE =24 HFE A7EE007)

are either too pessimistic or too optimistic There—

fore, there ig no model that works best [or all

software projects when the data sel is small
3

The number of lndden umts m the neural network
models simulated by Karunanithy, Whitley and
Malaiva [8] varied from O to 4 depending on the
size of the traimng data set and the nature of the
data set. But in the predictive [lier, the number
of delays 1s 1 for 7 dala sels out of 10 data sets
and does nol exceed 4 That is, one or two delavs
is enough for good predictability ;

Most of the SRGMs have only 2 or 3 paramelers.
The number of parameters in the prediclive filter
ig d+ 1. Since 1< d<4 [or the 10 dala sets, the
number of parameters for good preciction is
slmost the same with those for SRGMs.

@

{Teble 3y e., for 10 Fallure Count Data Sets

Next-slap Avernge Predichion Errar (Rank)
Iocel Dala | Dala | Bala | Tata | Dala | Data | Data | Data | Data | Deta
1 3 4 3] [} 7 8 9 IH L
| TE3 1055 GRF) 848 | 47| (61| 247 | 3 | 059 | 333
[N DR G A R I S I [2
0.7 | B4 | BEB [10007 473 | 63| A5G | 1182| 550 | 433
Generabzanon | (2 | {8 | @ [@ | O [W] B[@ | 0] tH
heural | FEN- 360 | 63 | 464 [a9 A5 | 37| 52| 67| 745 | L&D
Netwarks | Prediclun @)@ Wy @ ||]3] |
JorcenMel- | 679 | BRI 831 | 200 525 | 207 [00 [072 | 4uR | LB
Gereral zanon | () | (3) | (0 | () | €OV] 4@ | 00| 3 | (0] (D)
JordenNer-)] 603 | GL1) BGF| 5241 200 373 | 641 43
Predowon | J @B | @] @ % (7}

T33| TR | 541 | o2 | 447 283 147 | 1020] 375 | 324

Logenthene | sl | | [o | e | @) @ | @

Inverse gn | 617 | 7w | o7 (33 [2| 1| om] s | 21a
Pobinoial [8 | @ | @ | @ | w @@ @alalw
Stastelyp [667|785 | 60l 615 | ual | 250 | 25 | 0o 9z | A
SRGMs B @ || e W @
o MEEENIEE I RIS

o | ey Jan g | @ | @] w| el @

Delayed 503 [REE] A% 109 363§ 307 [399 | 10:0] 62 | 35

S-sh-pe il e ol sl ole|le|ale

4.2 Case B Fallure Time Data

‘We now perlorm prediction experiment for the [ailure
time data. For given number of delays o, the next-step
prediction experiments praceed as follows .

Step (1) Set i= 4.

Step (2} Train each neural network model by using the
LMS algorithm and the lrmming dala set

81,389,777, 81

Step (3} For each trained network, predict / step ahead
cumulative number of [ailires 5,4, far j=1,

2, » and then compute corresponding

relative prediclion errors,
€= (3:+;*51+;)I‘3H—; - 100.

Step (4) Increase 7 by 1 and repeal Steps (2} and (3)
until f=n—#,

Step {81 Compute Lhe average of e, aver /.

As discussed in the previous subsection, we use e.,
as the predictability measure. For SRGMs 5., is the
estimate af the (/-7 th lailure time oblained from
5, 4=1,2,-~,{. Then e,,and 2., for SRGMs can be
also obrained.

A suitable value of & is selected by examining the
plot of ¢., against @ as done in Seclion 4.1. For

example. e ., for Data2 are depicted m (Fig 5)

"l
18 00

168 DO
14 060
12 00
10 00

800

oy LY

) - ! +
o 10 20 30 A0 50 RO 7o A0 90 100 110120 130

d

{Flz. %) Plot of & ,aganst & for Date?

Apparently &= 1 15 preferred to olher values ol .
(Fig. 8) shows s, and s, for d=1. <Tahle 4> shows
selected valucs of ¢ [or the 4 failure bme data scts,
each of which is either 1 or 2 Using the values of &
in <Tahle 4>, the next-step predictions were performed
for each failure time data set.

The resulting ¢ ;'s were presented and compared

with those of Park, Lee and Park [I5] in <Table 5>

W
l—'(l’

o b R e
0 10 20 0 40 5 6 70 80 90 100 110 |20 130

{Fig 6) Plot of s, and s, for Data2 (d=1)

{Tahle 47 Selected values of & for 4 failure time data

seis
Data Set | Data? | Datall | Datal? | Datald
Number of Delays | 1 2 2]!

{Tahle 5 e., for 4 Failure Time Data Sets

Next-step Average Prediction
Model Error (Rank)

Data2 | Datall |D al? | Datal3

Predictive 180 194

Filier 0 @

Neural | FTIN £47:2) 228 158

Nelworks | ~Generahzation| (2) (2) {2

FI'N 258 235 151
~Prediclion il (3 (1) -

Experiment results for the fallure time data suggest
the [ollowmgs *

(1) Predictive [ter 1s consistently ranked n the top

one ranks except for Datald, This observation

OIZEEIS 0183 £TEA0] MR Gl 2083

corroberates that predictive filter 1s better suited
for next-step prediclion than other well-known
neural nelwork models.

{2) The number of delays 1s anly one or two Ifor
pood predhction, the number of parameters in
predicitve filter is as small as those in SRGMs.
On the contrary, Other neural nctworl: models,
simulated by Park, Lee. and Park 131, require
much mare parameters since the number of

hudden umts is hetween 10 and 27

In our expenments, only 4 failure lime data set are
used For the salke of more general conclusion, exper-
iments of mare data set will be necessary. However,
experiment resulls indicate that the predicuve filter
waorks well enough [or soltware reliabilily prediction

baged on the faillue tme data,

5. Conclusions

As an attempl lo develop a universal software re-
liabilily prediction model, this paper suggests the
predictive lilter for bme domain failure data We in-
vestipated its predichve performance by using 14
different software fmhuwre data. Based on the next- step
AE, the suggested predictive filer 15 compared wilh
other well-known neural network models and statistical
soltware reliability groiwih models. Experimental re-
sults show that performance of the predictive filter 1s
Tetter tham other neural networle models and stalistical
SRGMs for large time domamn [ailure data (eg.,
> 100, except for Datal3) Moreover, for small data
sets, slatistical SRGMs and neural network models do
not show any significant difference, We thus come tw
the conclusion that the predictive [ilter is applicable as
a general software rehability prediction model tor the
time domam [ailwe data.

Hawever, maore data sels nced to be gathered and
analyzed [or more general conclusions. Especially for
the case where the [ailure time dals set s involved.

The drawback of predictive filter can be apply in

constant trme interval data. Therefore, ncural networle

2081 SHEEBMREE =25 HTE H7Z20007)

medeling for vanable time interval data be necessary
Thus, our research wn the future will be directed to this
problent

References

(1] A. A. Abdel-Ghaly, P Y Chan and B. Littlewood,
“Evaiuation of Competing JSoflware Reliability
Predictions,” IEEE Trans Software Eng., Vol.SI-
12, pp.950-967, 1956

[2] B. M. Anna-Mary, “A Study of ithe Musa Reliabili-
tv Model,” M.S. dissertation, Univ. Marviand, 1980

[3] S. Brocklehurst, B. Y. Chan, B Littlewood and J.
Snell, “Recalibrating Software Rehabihly Models,”
IEEE Trans. Software Eng., Vol.l8, pp.458-470.
1560,

[4] D. S. Clouse, C. L Giles, B. G. Home, and G. W
Cottrell, “Time-Delay Neural Networks @ Repre—
sentation and Inducuon of Finite State Machines,”
[EETL Trans. on Neural Nelworks, Yol.8, No.5, pp.
1065-1070, 1997,

[6] H. Denuth and M, Beale, “Neural Network Tool-
box User's Guide, Ver, 30." Math Works, Inc 1997

[B] A. L. Geel, “Sofiware Relishility Models . As-
sumptions, Linmtations, and Applcahibity,” [EEE
Trans. on Software Iing., Dec. pp.1411-1423, 1835,

[7] N Karunamth, D. Whitley and Y. K. Maluiya.
“Prediction of Soflware Reliability Using Connec-
tionist Models.” [EEE Trans. Software Eng., Vol
18, pp563-374, 1992,

[8] ¥ Karunanithi, D. Whitley and Y. K Malsiva,
“Using Newral Networks in Reliability Prediction,”
IEEE Software, Vaoll8, pp53-59. 1992,

[91 R. Lippman, “An Introduction to Computing with
Neural Nets,” IEEE Acoustics, Speech and Signal
Processing. pp.4-22. 1987

[10] Y. K. Malaiva, N. Kanmanithn, and P. Verma,
“Predictalnlity Measures [or Software Reliahility
Models,” TEEE Trans, on Reliability, Vol4l, No.4,
pp.539-546, 1992,

[11} K. Matsumota. T' Inoue, T. Kikuno, and X Tori,
“Experimental Evalialion of Scftware Reliahility
Growth Models,” Proc. TEEE Conf. FTCS-18, pp.
148-133, 1988.

(12} J.D. Musa, A. Lannins, and K. Okumoto, “Sofware
Reliability * Measurement, Prediction, Applica-
tion,” MeGraw-Hill, New Yorlk. 1937

[13] J. . Musa, “Soltware Reliabilily Data,” Technical
Report, Data and Analysis Center [or Software,
Rome Aur Developmenl Center, Griffins AI'B, New
Yorlk, 1979,

[14] M. Ohba, “Software Reliality Anatysis Models,”
IBM H. Tcs. Develop., Vol.28, ppd28-443, 1984,

[13] J. ¥, Park, S. U. Lee, and J H. Park, “Neural Net-
work Modeling for Sollware Rehability Prediction
from Failure Time Data,” Journal of Electrical Eng.
and Information Science, Val.4, Nod, pp.533-538,
19909,

{(16] C. V. Ramamoorthy and IF. B Bastani, “Soltware
Reliability-Status and Perspectives,” IEEE Trans.
Selt. Eng . SE-8 Nod, July, pp.3b4-371, 1982

[17] M. L. Shooman, “Probablishc Models for Soltware
Relhabihty Prediction,” Stalistical Compuler Per-
lormance Evaluanon, New York Academic, pp.485—
502, 1972

[18] ¥ Thoma, ¥, Tckunaga, S. Nagase, and Y.
Murata, “Slructural Approach to the Estimabion of
the MNumber of Residual Soflware Faults Based on
the Hyper-Geometric Distribution,” IECE Trans
on Software Eng . Vol 15, pp 345-335, 198G,

[18] ¥ Thaoma. H. Yamano, M Ohba, and R. Jacoby,
“Parameter Estimation of the Hyvper-Geometric
Distnmbution Model for Real Test/Debug Data,”
Dent. Computer Science, Tokyao Inst. Tech., Tech
REP 901002, 1980,

[20] B Widrow znd S. D Sterns, “Adaptive Signal
Progessing,” Prantice-Hall, New York, 1983,

Joong-Yang Park

received hus B.S. degree in Applied
Statstics from Yonsel University
in 1882, the M.S. and Ph.D. degrees
in Indusirial Engineering lrom

‘ "‘.Q Korea Advanced Institute ol Sci-
I cnee and Technology in 1984 and 1994
Since 1985 he has been a professor of the Department
of Statislics, Gyeongsang National University, Chinju,
Korea
His rescarch inlerests arve in the arca of Sollware
Relighility, Newral MNetworles, Limear Slatistical Models
and Expernmental Designs.
e-mal parlgy@nongac.gsnuacla

sang-Un Lee

receved his B.S. degree in Avi-
pnics [or Hankuk Aviation Uni-
versity in 1987, the M.S. degree in
Computer Science from Gyeong-

sang Nabonal University in 1997,

He is currently working Loward
the Ph.D. degree in Compuler Science at the Gyeongsang
Natwnal Universitv. Chinju, Karea

His research mlerests are Soltware Quality Assurance
and Reliahility Modelng, Neural Networks.

e-mail © sangun_lee@hanmail nel

JI=EHE 088 ~ZEQIH MEIM 0= 2085

Jae-Heung Park

received his BS degree in Math-

emabcs [rom Chungbule Mational

uriversity n 1978, the M.S, and

Ph D degrees m Computer Science
n“ \\“ from ChungAng National Umver-
sity 1 1930 and 1988,

Since 1983 he has been a professer of the Department
of Computer Selence, Gyeongsang National Thmversity,
Chinju, Korea.

s research inferests are in the arca of Softwarc
Reliahility, Newral Networlss, Automatic Testing Toal,
System Analysis and Design.

e-mail ¢ pih@nongae.gsnu.ackr

