• Title/Summary/Keyword: Software GPS

Search Result 421, Processing Time 0.035 seconds

Impacts of GPS Pseudolite Signals on GPS Software Receivers (GPS 소프트웨어 수신기에 대한 GPS 의사위성의 영향 분석)

  • Kwon, Keum-Cheol;Jang, Yoon-Jae;Yang, Cheol-Kwan;Shim, Duk-Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.627-634
    • /
    • 2012
  • This paper considers the performance of the non-participating GPS software receivers under the presence of GPS pseudolite(PL). For the continuous PL signal and pulsed PL signal, the impact of PL signals on the GPS software receivers is investigated according to the signal strength of the PL and the distance between the PL and the GPS receiver.

An Efficient Correlation Scheme for the GPS Software Receiver

  • Lim, Deok-Won;Cho, Deuk-Jae;Park, Chan-Sik;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1216-1221
    • /
    • 2005
  • The GPS software receiver based on the SDR(Software Defined Radio) technology provides the ability to easily adopt other signal processing algorithms without changing or modifying the hardware of the GPS receiver. However, it is difficult to implement the GPS software receiver using a commercial processor because of heavy computation load for processing the GPS signals in real time. This paper proposes an efficient GPS signal processing scheme and correlator structure to reduce the computation load for processing the GPS signal in the GPS software receiver, which uses a patterned look-up table method to generate the correlation value between the GPS signals and the replica signals. In this paper, it is explained that the computation load of the proposed scheme is much smaller than that of the previous GPS signal processing scheme. Finally, the processing time of the proposed scheme is compared with that of the previous scheme, and the improvement is shown from the viewpoint of the computation load.

  • PDF

Development of a GPS Data Processing S/W for Cadastral Survey (지적측량을 위한 GPS 자료처리 S/W 개발)

  • 우인제;이종기;김병국
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.507-512
    • /
    • 2004
  • Research that establish new cadastral survey model that use GPS to introduce GPS observation technique in cadastral survey and research that develop connection technologies are gone abuzz. The purpose of this research is to keep in step in such trend and grasp present condition and performance of surveying connection to common use GPS data processing software, and analyze data processing algorithm, and develop suitable GPS data processing software in our real condition regarding GPS data processing and result of control point calculation. This research studies analysis common use software and error occurrence by data processing method that college and company have. Also, It analyzes algorithm that is applied to existing GPS data processing software. After that we study algorithm that is most suitable with cadastral survey and then develop cadastral survey calculation software for new cadastral control points

  • PDF

GPS Software Development for Calculation of Cadastral Control Points (지적기준점 성과계산을 위한 GPS 소프트웨어 개발)

  • 우인제;이종기;김병국;이민석
    • Spatial Information Research
    • /
    • v.12 no.1
    • /
    • pp.101-110
    • /
    • 2004
  • Research that establish new cadastral survey model that use GPS to introduce GPS observation technique in cadastral survey and research that develop connection technologies are now abuzz. The purpose of this research is to keep in step in such trend and grasp present condition and performance of surveying connection to common use GPS data processing software, and analyze data processing algorithm, and develop suitable GPS data processing software in our real condition regarding GPS data processing and result of control point calculation. This research studies analysis common use software and error occurrence by data processing method that college and company have. Also, It analyzes algorithm that is applied to existing GPS data processing software. After that we study algorithm that is most suitable with cadastral survey and then develop cadastral survey calculation software for new cadastral control points.

  • PDF

A Study on the Long Baseline Processing for GPS Surveying (GPS 장기선 해석에 관한 기초 연구)

  • 최윤수;고준환;이기도
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.123-129
    • /
    • 2003
  • This study analyzed and compared the results of baseline processing by Bernese GPS software packages and by GPSurvey software respectively. Then it investigated considerations when very long baselines are processed. There are rarely differences which is accompanied by baseline length when it is processed by Bernese GPS software but there are somewhat differences in proportion to the baseline length when it is processed by GPSurvey software.

Design of a PC based Real-Time Software GPS Receiver (PC기반 실시간 소프트웨어 GPS 수신기 설계)

  • Ko, Sun-Jun;Won, Jong-Hoon;Lee, Ja-Sung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.6
    • /
    • pp.286-295
    • /
    • 2006
  • This paper presents a design of a real-time software GPS receiver which runs on a PC. The software GPS receiver has advantages over conventional hardware based receivers in terms of flexibility and efficiency in application oriented system design and modification. In odor to reduce the processing time of the software operations in the receiver, a shared memory structure is used with a dynamic data control, and the byte-type IF data is processed through an Open Multi-Processing technique in the mixer and integrator which requires the most computational load. A high speed data acquisition device is used to capture the incoming high-rate IF signals. The FFT-IFFT correlation technique is used for initial acquisition and FLL assisted PLL is used for carrier tracking. All software modules are operated in sequence and are synchronized with pre-defined time scheduling. The performance of the designed software GPS receiver is evaluated by running it in real-time using the real GPS signals.

Analysis of GPS Software Receiver (GPS Software 수신기의 분석)

  • Zhang, Wei;Suh, Hee-Jong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.229-236
    • /
    • 2018
  • In this paper, we see the acquisition and tracking of L1 C/A signal on GPS receiver, do the research on GPS signal capture principle's foundation, and do the simulation of the GPS signals capture process for it's realizing and analyzing by Matlab. The simulation result, we can confirm this method's accuracy and the feasibility, and see that a satellite receiving ability play an important role in the efficiency of receiver.

On Study of the Very Long Baseline Processing using Bernese (Bernese를 이용한 장기선 처리에 대한 연구)

  • 최윤수;고준환;전철민;이기도
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2002.04a
    • /
    • pp.103-118
    • /
    • 2002
  • There are many GPS software packages and this document compared the result of baseline processing by Bernese GPS software with it by GPSurvey software. This paper also analyzed the results and investigated considerations when very long baselines are processed. There are rarely differences which is accompanied by baseline distance when it is processed by Bernese GPS software but there are somewhat differences which is accompanied by baseline distance when it is processed by GPSurvey software.

  • PDF

An Efficient Signal Processing Scheme Using Signal Compression for Software GPS Receivers

  • Cho Deuk-Jae;Lim Deok-Won;Park Chan-Sik;Lee Sang-Jeong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.344-350
    • /
    • 2006
  • The software GPS receivers based on the SDR technology provide the ability to easily adapt the other signal processing algorithms without changing or modifying the hardware of the GPS receiver. However, it is difficult to implement the software GPS receivers using a commercial processor because of the heavy computational burden for processing the GPS signals in real-time. This paper proposes an efficient GPS signal processing scheme to reduce the computational burden for processing the GPS signals in the software GPS receiver, which uses a fundamental notion compressing the replica signals and the encoded look-up table method to generate correlation values between GPS signals and replica signals. In this paper, it is explained that the computational burden of the proposed scheme is much smaller than that of the typical GPS signal processing scheme. Finally, the processing time of the proposed scheme is compared with that of the typical scheme, and the improvement in the aspect of the computational burden is also shown.

Development of MATLAB GUI Based Software for Generating GPS RINEX Observation File (MATLAB GUI 기반 GPS RINEX 관측 파일 생성 소프트웨어의 개발)

  • Kim, Dong-uk;Yun, Ho;Han, Deok-hwa;Jang, Joo-young;Kee, Chang-don;So, Hyoung-min;Lee, Ki-hoon;Jang, Jae-gyu
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.299-304
    • /
    • 2015
  • This paper introduces development of the MATLAB GUI based software for generating GPS RINEX observation file. The purpose of this software is to generate GPS measurements of reference station or dynamic user, which are similar to the real GPS receiver data, accurately and efficiently. This software includes two data generation modes. One is Precision mode which generates GPS measurements as accurate as possible using post-processing data. The other is Real-time mode which generates GPS measurements using GPS error modeling technique. GPS error sources are calculated on the basis of each data generation mode, and L1/L2 pseudorange, L1/L2 carrier phase, and Doppler measurements are produced. These generated GPS measurements are recorded in the RINEX observation version 3.0 file. Using received GPS data at real reference station, we analyzed three items to verify software reliability; measurement bias, rate of change, and noise level. Consequently, RMS error of measurement bias is about 0.7 m, and this verification results demonstrate that our software can generate relatively exact GPS measurements.