• Title/Summary/Keyword: Software Basic Education

Search Result 235, Processing Time 0.019 seconds

Design and implementation of an AI-based speed quiz content for social robots interacting with users (사람과 상호작용하는 소셜 로봇을 위한 인공지능 기반 스피드 퀴즈 콘텐츠의 설계와 구현)

  • Oh, Hyun-Jung;Kang, A-Reum;Kim, Do-Yun;Jeong, Gu-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.611-618
    • /
    • 2020
  • In this paper, we propose a design and implementation method of speed quiz content that can be driven by a social robot capable of interacting with humans, and a method of developing an intelligent module necessary for implementation. In addition, we propose a method of implementing speed quiz content through the process of constructing a map by arranging and connecting intelligent module blocks. Recently, software education has become mandatory and interest in programming is increasing. However, programming is difficult for students without basic knowledge of programming languages to directly access, and interest in block-type programming platforms suitable for beginners is growing. The block-type programming platform used in this paper is a platform that supports immediate and intuitive programming by supporting interactions between humans and robots. In this paper, the intelligent module implemented for the speed quiz content was used by blocking it within a block-type programming platform. In order to implement the scenario of the speed quiz content proposed in this paper, we implement a total of three image-based artificial intelligence modules. In addition to the intelligent module, various functional blocks were placed to implement the speed quiz content. In this paper, we propose a method of designing a speed quiz content scenario and a method of implementing an intelligent module for speed quiz content.

An analysis of students' online class preference depending on the gender and levels of school using Apriori Algorithm (Apriori 알고리즘을 활용한 학습자의 성별과 학교급에 따른 온라인 수업 유형 선호도 분석)

  • Kim, Jinhee;Hwang, Doohee;Lee, Sang-Soog
    • Journal of Digital Convergence
    • /
    • v.20 no.1
    • /
    • pp.33-39
    • /
    • 2022
  • This study aims to investigate the online class preference depending on students' gender and school level. To achieve this aim, the study conducted a survey on 4,803 elementary, middle, and high school students in 17 regions nationwide. The valid data of 4,524 were then analyzed using the Apriori algorithm to discern the associated patterns of the online class preference corresponding to their gender and school level. As a result, a total of 16 rules, including 7 from elementary school students, 4 from middle school students, and 5 from high school students were derived. To be specific, elementary school male students preferred software-based classes whereas elementary female students preferred maker-based classes. In the case of middle school, both male and female students preferred virtual experience-based classes. On the other hand, high school students had a higher preference for subject-specific lecture-based classes. The study findings can serve as empirical evidence for explaining the needs of online classes perceived by K-12 students. In addition, this study can be used as basic research to present and suggest areas of improvement for diversifying online classes. Future studies can further conduct in-depth analysis on the development of various online class activities and models, the design of online class platforms, and the female students' career motivation in the field of science and technology.

Implementation of Markerless Augmented Reality with Deformable Object Simulation (변형물체 시뮬레이션을 활용한 비 마커기반 증강현실 시스템 구현)

  • Sung, Nak-Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.35-42
    • /
    • 2016
  • Recently many researches have been focused on the use of the markerless augmented reality system using face, foot, and hand of user's body to alleviate many disadvantages of the marker based augmented reality system. In addition, most existing augmented reality systems have been utilized rigid objects since they just desire to insert and to basic interaction with virtual object in the augmented reality system. In this paper, unlike restricted marker based augmented reality system with rigid objects that is based in display, we designed and implemented the markerless augmented reality system using deformable objects to apply various fields for interactive situations with a user. Generally, deformable objects can be implemented with mass-spring modeling and the finite element modeling. Mass-spring model can provide a real time simulation and finite element model can achieve more accurate simulation result in physical and mathematical view. In this paper, the proposed markerless augmented reality system utilize the mass-spring model using tetraheadron structure to provide real-time simulation result. To provide plausible simulated interaction result with deformable objects, the proposed method detects and tracks users hand with Kinect SDK and calculates the external force which is applied to the object on hand based on the position change of hand. Based on these force, 4th order Runge-Kutta Integration is applied to compute the next position of the deformable object. In addition, to prevent the generation of excessive external force by hand movement that can provide the natural behavior of deformable object, we set up the threshold value and applied this value when the hand movement is over this threshold. Each experimental test has been repeated 5 times and we analyzed the experimental result based on the computational cost of simulation. We believe that the proposed markerless augmented reality system with deformable objects can overcome the weakness of traditional marker based augmented reality system with rigid object that are not suitable to apply to other various fields including healthcare and education area.

Perceptions of Information Technology Competencies among Gifted and Non-gifted High School Students (영재와 평재 고등학생의 IT 역량에 대한 인식)

  • Shin, Min;Ahn, Doehee
    • Journal of Gifted/Talented Education
    • /
    • v.25 no.2
    • /
    • pp.339-358
    • /
    • 2015
  • This study was to examine perceptions of information technology(IT) competencies among gifted and non-gifted students(i.e., information science high school students and technical high school students). Of the 370 high school students surveyed from 3 high schools(i.e., gifted academy, information science high school, and technical high school) in three metropolitan cities, Korea, 351 students completed and returned the questionnaires yielding a total response rate of 94.86%. High school students recognized the IT professional competence as being most important when recruiting IT employees. And they considered that practice-oriented education was the most importantly needed to improve their IT skills. In addition, the most important sub-factors of IT core competencies among gifted academy students and information science high school students were basic software skills. Also Technical high school students responded that the main network and security capabilities were the most importantly needed to do so. Finally, the most appropriate training courses for enhancing IT competencies were recognized differently among gifted and non-gifted students. Gifted academy students responded that the 'algorithm' was the mostly needed for enhancing IT competencies, whereas information science high school students responded that 'data structures' and 'computer architecture' were mostly needed to do. For technical high school students, they responded that a 'programming language' course was the most needed to do so. Results are discussed in relations to IT corporate and school settings.

Predicting Healthy Lifestyle Patterns in Older Community Dwelling Adults: A Latent Profile Analysis (잠재프로파일 분석을 활용한 한국 노인 라이프스타일 유형화와 영향요인 분석)

  • Park, Kang-Hyun;Yang, Min Ah;Won, Kyung-A;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.10 no.2
    • /
    • pp.75-93
    • /
    • 2021
  • Objective : The aim of this study was to identify subgroups of older adults with respect to their lifestyle patterns and examine the characteristics of each subgroup in order to provide a basic evidence for improving the health and quality of life. Methods : This cross-sectional study was conducted in South Korea. Community-dwelling older adults (n=184) above the age of 65 years were surveyed from April 2019 to May 2019. This study used latent profile analysis to examine the subgroups. Chi-squared (χ2) and multinomial logistic regression measures were then used to analyze individual characteristics and influencing factors. Results : The pattern of physical activity which is one of the lifestyle domains in elderly was categorized into three types: 'passive exercise type (31.1%)', 'low intensity exercise type (54.5%)', and 'balanced exercise type(14.5%)'. Activity participation was divided into three patterns: 'inactive type (12%)', 'self-management type (61%)', and 'balanced activity participation type (27%)'. In terms of nutrition, there were only two groups: 'overall malnutrition type (13.5%)' and 'balanced nutrition type (86.5%)'. Furthermore, as a result of the multinomial logistic regression analysis to understand the effects of lifestyle types on the health and quality of life of the elderly, it was confirmed that the health and quality of life were higher in those following an active and balanced lifestyle. In addition, gender, education level and residential area were analyzed as predictive factors. Conclusion : The health and quality of life of the elderly can be improved when they have balanced lifestyle. Therefore, an empirical and policy intervention strategy should be developed and implemented to enhance the health and quality of life of the elderly.