• Title/Summary/Keyword: Software Architecture Design

Search Result 818, Processing Time 0.025 seconds

Implementation of Multilateral Control System for Small UAV Control-Focused on Design (소형 무인기 통제를 위한 다자간 방식 관제시스템 구축방안-설계 중심으로)

  • Choi, Hyun-Taek;Kim, Seok-Kwan;Ryu, Gab-Sang
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.65-71
    • /
    • 2017
  • In this paper, we propose a design method for the construction of LTE-based small unmanned aerial vehicle control system to quickly and reliably collect multiple small unmanned aerial vehicle position information simultaneously flying all over the country. In particular, the main requirements are the network (N/W), hardware (H/ W), software(SW), Database(DB), development architecture, and business needs. To satisfy these requirements, N/W, H/W, SW, DB design, and architectural design plan were suggested regarding the design requirements of a small UAV system. To effectively control the small unmanned multi-party system in the system design, the architecture is divided into the front-end service area and the back-end service area according to the function and role of the unit system. In the front-end service area that grasps and controls the position and state of small unmanned aerial vehicles (UAVs), we have studied the design part that can be expanded to N through TCP/IP network by applying Client PC method.

Design of an SPI Interface for multimedia cards in ARM Embedded Systems (ARM 내장 임베디드 시스템용 멀티미디어카드를 위한 SPI 인터페이스 설계)

  • Moon, San-Gook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.273-278
    • /
    • 2012
  • In this contribution, we design and implement an SPI hardware interface for the microprocessor to communicate with the MMC (Multi-Media Card) in an embedded system. Proposed architecture is compatible with the APB in AMBA bus architecture. Embedding OS in an embedded system means a big burden in terms of hardware and software ending up with performance decline. In this paper, we adopt the concept of SPI communication without using OS in the embedded system and implement in a form of FPGA chip. The designed SPI module was automatically synthesized, placed, and routed. Implementation was performed through the Altera FPGA and well operated at 25MHz clock frequency, which satisfied our target speed.

Design of Messaging System′s Architecture and QoS Engineering Model for Global Community Services (광역 커뮤니티서비스를 위한 메시징 시스템의 구조 및 QoS엔지니어링 모델의 설계)

  • 궁상환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.380-386
    • /
    • 2003
  • As Internet is spreaded widely, the virtual communities among people with the same interest and hobby are dynamically created. The exchange of fruitful opinion and information makes them to be closed, not only with the help of the messaging system but also wireless terminals. The messaging system is a core technology supporting the global community services like chatting, messenger, short message services, and file sharing services. The paper focus on the design of software architecture for messaging system and the engineering model for QoS support.

  • PDF

Embedded System Design with COS LoRa technology (COS LoRa 기반의 임베디드 시스템 설계)

  • Hong, Seonhack;Cho, Kyungsoon;Yoon, Jinseob
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.3
    • /
    • pp.29-38
    • /
    • 2018
  • It is the approach of embedded system design that analyzes COS(Cut Out Switch) failure in the power distribution and an instantaneous breakdown of power distribution supply could cause the weakness of industrial competence and therefore we need to feed the stable power distribution with developing the technology of open-source embedded system. In this paper, we apply the LoRa technology which is the Internet of Things(IoT) protocol for low data rate, low power, low cost and long range sensor applications. We designed the hardware and software architecture setup and experimented the embedded system with network architecture and COS monitoring system including accelerometer for detecting the failure of distribution line and sensing the failure of its fuse holder by recognizing the variation and collision and afterwards sending the information to a gateway. With experimenting we designed the embedded platform for sensing the variation and collision according to the COS failure, monitoring its fuse holder status and transferring the information of states with LoRa technology.

Nonlinear time-varying analysis algorithms for modeling the behavior of complex rigid long-span steel structures during construction processes

  • Tian, Li-Min;Hao, Ji-Ping
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1197-1214
    • /
    • 2015
  • There is a great difference in mechanical behavior between design model one-time loading and step-by-step construction process. This paper presents practical computational methods for simulating the structural behavior of long-span rigid steel structures during construction processes. It introduces the positioning principle of node rectification for installation which is especially suitable for rigid long-span steel structures. Novel improved nonlinear analytical methods, known as element birth and death of node rectification, are introduced based on several calculating methods, as well as a forward iteration of node rectification method. These methods proposed in this paper can solve the problem of element's 'floating' and can be easily incorporated in commercial finite element software. These proposed methods were eventually implemented in the computer simulation and analysis of the main stadium for the Universiade Sports Center during the construction process. The optimum construction scheme of the structure is determined by the improved algorithm and the computational results matched well with the measured values in the project, thus indicating that the novel nonlinear time-varying analysis approach is effective construction simulation of complex rigid long-span steel structures and provides useful reference for future design and construction.

A Study on the Proper Location of Ventilation Outlets and Inlets in the Germ Free Pigs' Room (무균돈사내 급배기구의 적정위치설정에 관한 연구)

  • Kwon, Soonjung;Son, Deok-Young;Choi, Yoon-Ho
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.14 no.4
    • /
    • pp.39-46
    • /
    • 2008
  • Construction and operation of Germ Free Pigs' facilities are very expensive because pigs' rooms and other major rooms of the facility require germfree environments. Especially, running the HVAC system of aseptic facilities requires a lot of expenses. However, proper location and efficient shape of outlets/inlets for the ventilation of the room can reduce the excessive running cost. In order to do that, this study proposes alternative location and shape of ventilation outlets/inlets to the existing design pattern in germfree pigs' room. The design condition of this study is the maintenance of adequate temperature(24$^{\circ}C$, $NH_3$concentration level(below 1.5 ppm), and air stream speed(below .25m/sec) in the pigs' room for the summer and the winter together. As the Software Program, FLUENT(Ver. 6.2) has been used for the analysis of proposed ventilation patterns. In conclusion, wall inlets and ceiling inlet/outlet are advisable in summer, wall inlets and ceiling outlets is advisable in winter. As far as the shape is concerned, diffuser type for the ceiling outlet is desirable.

  • PDF

The Potential of Building Information Modeling in Application Process of G-SEED

  • Chen, De Jian;Yoon, Heakyung
    • Architectural research
    • /
    • v.20 no.4
    • /
    • pp.121-128
    • /
    • 2018
  • Given the barriers to implement green building rating systems, Building Information Modeling (BIM) was suggested as an effective solution integrating information into one model and saving substantial time to facilitate certification process. Synergies between BIM and Leadership in Energy and Environment Design (LEED), the most widely used rating system, have been researched for a few decades. This paper demonstrates literature review about the development of integration between BIM and LEED. The research focuses on synergies between BIM and Green Standard for Energy & Environmental Design (G-SEED) in Korea, as one of important strategies to mitigate greenhouse gas emission. The research compares LEED and G-SEED related items based on evaluation contents. The result manifests G-SEED and LEED share many common items in different degrees. Therefore, it is entirely possible for G-SEED and BIM to adapt same developing mode of LEED and BIM. Moreover, the study measures the potential of BIM in application process of G-SEED certification by investigation of credits in LEED and G-SEED can be earned by BIM. The results of paper indicate the documentation support LEED and G-SEED may be prepared directly, semi-directly and indirectly via sustainability analyses software in BIM.

A Study on the Software Standardization and Simulator Design for Efficient Reliability Test in Combat System

  • Choi, Hwan-Jun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.151-159
    • /
    • 2022
  • In this paper, we propose the standardization architecture and weapon-sensor simulator for efficient reliability test in combat system. To reduce man-month of reliability test, application with high dependency on other module is selected and apply FORM. The proposed standardization architecture extracts common, variable elements and design patterns, S.O.L.I.D principles were applied. The proposed weapon-sensor simulator implements essential functions by identifying highly dependent element of other modules and the information from equipment can be directly received without processing by using communication middleware. As a result, it can replace actual ship-mounted equipment. In addition, it is possible to reduce the consumption rate of human resources when perform reliability test and modification time can be shorted.

Design for Weapon Live Test Decision Support System Using Digital Twin Architecture (디지털 트윈 아키텍처를 활용한 무기체계 성능시험 지원체계 설계)

  • Kim, Eungsu;Ryu, Kiyeol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.501-512
    • /
    • 2022
  • The purpose of the weapon live test during the phase of development is to provide essential information to decision makers that verify and validate the performance capabilities of weapons. Due to varying allocation and high variance of test resources with an increase in the weapon system's capability, the test environment can get highly complex, which can lead to a decrease in the reliability of test results. This issue can be addressed by applying a decision support system that provides various timely information collected by resources during the test process. The decision support system can be designed by applying the concept of digital twins, that are defined as digital replicas of components, systems and processes. This paper describes a design methodology of the decision support system that consists of digital models and service functions using digital twin architecture. A case study illustrates the feasibility of the proposed methodology in supporting the weapon live test process.

Seismic performance of high strength steel frames with variable eccentric braces based on PBSD method

  • Li, Shen;Wang, Ze-yu;Guo, Hong-chao;Li, Xiao-lei
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.527-542
    • /
    • 2020
  • In traditional eccentrically braced steel frames, damages and plastic deformations are limited to the links and the main structure members are required tremendous sizes to ensure elasticity with no damage based on the force-based seismic design method, this limits the practical application of the structure. The high strength steel frames with eccentric braces refer to Q345 (the nominal yield strength is 345 MPa) steel used for links, and Q460 steel utilized for columns and beams in the eccentrically brace steel frames, the application of high strength steels not only brings out better economy and higher strength, but also wider application prospects in seismic fortification zone. Here, the structures with four type eccentric braces are chosen, including K-type, Y-type, D-type and V-type. These four types EBFs have various performances, such as stiffness, bearing capacity, ductility and failure mode. To evaluate the seismic behavior of the high strength steel frames with variable eccentric braces within the similar performance objectives, four types EBFs with 4-storey, 8-storey, 12-storey and 16-storey were designed by performance-based seismic design method. The nonlinear static behavior by pushover analysis and dynamic performance by time history analysis in the SAP2000 software was applied. A total of 11 ground motion records are adopted in the time history analysis. Ground motions representing three seismic hazards: first, elastic behavior in low earthquake hazard level for immediate occupancy, second, inelastic behavior of links in moderate earthquake hazard level for rapid repair, and third, inelastic behavior of the whole structure in very high earthquake hazard level for collapse prevention. The analyses results indicated that all structures have similar failure mode and seismic performance.