• Title/Summary/Keyword: Softening Point

Search Result 167, Processing Time 0.018 seconds

Effect of softening point of glass frit on the sintering behavior of low-temperature cofitrable glass/ceramic composites (유리 프릿트의 연화점이 저온소성용 글라스/세라믹 복합체의 소결거동에 미치는 영향)

  • 구기덕;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.619-625
    • /
    • 1998
  • The effect of softening point and glass amount of glass frit on the sintering behavior of low temperature cofirable glass/ceramic composites was studied and according to these results, glass/ceramic composites with high sintered density was fabricated. The density of composites was increased as the glass amount was increased. In case of using the glass with low softening point, the deformation of specimen was occurred though the ratio of the glass amount in the specimen was low. But, in case of using the glass with high softening point, the sintered density of composites was increased in accordance with glass amount. With the specimen of high softening point, the deformation was not happened. Therefore, it was found that the densification was progressed continuously in high glass amount. From the study on the effect of softening point of glass on sintering behavior, the suitable softening point and glass amount for fabrication of glass/ceramic composites can be anticipated. When glass frit with softening point of $790^{\circ}C$ was chosen according to this result, low temperature cofirable glass/ceramic composites with high density (97%) at $900^{\circ}C$ was fabricated.

  • PDF

The Effect of Frit on Bonding Behavior of Low-firing-substate and Cu Conductor (프릿트 첨가에 따른 저온소성 기판과 Cu와의 접합 거동에 관한 연구)

  • 박정현;이상진
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.601-607
    • /
    • 1995
  • The bond strength between the low-firing-substrate and Cu conductor depended on the softening point and the amount of frit added to the metal paste. The addition of 3 wt% frit (softening point: 68$0^{\circ}C$) to the metal paste resulted in the improvement of bond strength, which was approximately 3 times higher (3kg/$\textrm{mm}^2$) than that of non frit condition. It was also found that fracture surface shifted to the ceramic substrate in the interface region. These phenomena were attributed to the frit migration into the metal-ceramic interface. It was thought that the migration of glass frit occurred extensively when the softening point of glass firt was 68$0^{\circ}C$. The sheet resistance of Cu conductor remained constant by the addition of 4 wt% frit regardless of softening point of frit. For all samples with more than 4 wt% frit, the sheet resistance increased abruptly.

  • PDF

Laboratory Testing of Material Properties of Asphalt Binder Containing Wasted Vinyl (폐비닐을 함유한 아스팔트 바인더 물성의 실내 시험)

  • Lee, Kang-Hun;Kim, Young-Chin;Kim, Byeong-Jun;Lim, Jin-Sun;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.85-91
    • /
    • 2012
  • PURPOSES: In this study, various laboratory tests were performed to investigate the suitability of wasted vinyl as a modifier of asphalt binder. METHODS: Based on the ASTM specification, variations in material properties of asphalt binder such as penetration, flash point, softening point, ductility, penetration index (PI), and performance grade (PG) with vinyl content were tested and analyzed. RESULTS: Lavoratory tests revealed that penetration and ductility of the asphalt binder increased with the vinyl content. The flash point, softening point, and PI decreased, and PG changed from 64-22 to 70-22 with increase of the vinyl content. CONCLUSIONS: Wasted vinyl modified the material properties of the asphalt binder. However, the asphalt binder with vinyl content over 6.0% was unsuitable as a pavement material.

On the viscosity of Bunker C fuel oil (방카 C 중유의 점도에 관한 실험)

  • 나윤호
    • Journal of the Korean Professional Engineers Association
    • /
    • v.4 no.15
    • /
    • pp.11-15
    • /
    • 1971
  • Bunker C fuel oil may be taken as a conc. solution of asphalt as a solute. It may be assumpt that there will be unalogical relationship between cone. solution and solute in regological behavior. Investigation was carried out to fiud out the -opitimum preheating temperature. The following results were obtained: the colloidal structure bunker C fuel oil undergoes a transition at around the softening point of the solute asphalt: and the flow charactor changes from non-Newtonian flow to Newtonian as well as its activation energy is memarkably reduced at around softening point of the solute asphalt for the purpose of the improvement of flow charater of Bunker C fuel oil, the preheating must be done above the softening point of a solute asphalt.

  • PDF

Combined hardening and localized failure with softening plasticity in dynamics

  • Do, Xuan Nam;Ibrahimbegovic, Adnan;Brancherie, Delphine
    • Coupled systems mechanics
    • /
    • v.4 no.2
    • /
    • pp.115-136
    • /
    • 2015
  • We present for one-dimensional model for elastoplastic bar with combined hardening in FPZ - fracture process zone and softening with embedded strong discontinuities. The simplified version of the model without FPZ is directly compared and validated against analytical solution of Bazant and Belytschko (1985). It is shown that deformation localizes in an area which is governed by the chosen element size and therefore causes mesh sensitivity and that the length of the strain-softening region tends to localize into a point, which also agrees with results obtained by stability analysis for static case. Strain increases in the softening domain with a simultaneous decrease of stress. The problem unloads elastically outside the strain-softening region. The more general case with FPZ leads to more interesting results that also account for induced strain heterogeneities.

The Change of Physical Properties of Epoxy Molding Compound According to the Change of Softening Point of ο-Cresol Novolac Epoxy Resin (올소 크레졸 노볼락 에폭시 수지 연화점 변화에 따른 에폭시 몰딩 컴파운드의 물성 변화)

  • Kim, Hwan Gun;Ryu, Je Hong
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.81-86
    • /
    • 1996
  • The physical properties of epoxy molding compound (EMC) according to the change of softening point of epoxy resin have been investigated in order to study the relationship between the properties of o-cresol novolac epoxy resin, which is main component of EMC for semiconductor encapsulation, and EMC. The softening points of used epoxy resin are 65.1 $^{\circ}C$, 72.2 $^{\circ}C$, and 83.0 $^{\circ}C$, respectively. The flexural strength and flexural modulus as mechanical properties were measured, and thermal expansion coefficient, thermal conductivity and glass transition temperature (Tg) as thermal properties, and spiral flow as moldability have been investigated to see the change of physical properties of EMC. The flexural modulus, thermal expansion coefficients in the glass state (${\alpha}_1$), and thermal conductivity of EMC were found to be keep constant value irrespective of the change of softening point, but Tg increased with softening point of epoxy resin, and the spiral flow decreased with that. It can be considered that these phenomena are due to the increase of crosslinking density of EMC according to the increase of softening point. The transition points were found out in the thermal expansion coefficient data in the rubbery state (${\alpha}_2$) and the flexural strength data. These can show the decrease of filler dispersion according to increase of epoxy resin viscosity.

  • PDF

Remaining life prediction of concrete structural components accounting for tension softening and size effects under fatigue loading

  • Murthy, A. Rama Chandra;Palani, G.S.;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.459-475
    • /
    • 2009
  • This paper presents analytical methodologies for remaining life prediction of plain concrete structural components considering tension softening and size effects. Non-linear fracture mechanics principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions. Size effect has been accounted for by modifying the Paris law, leading to a size adjusted Paris law, which gives crack length increment per cycle as a power function of the amplitude of a size adjusted stress intensity factor (SIF). Details of tension softening effects and size effect in the computation of SIF and remaining life prediction have been presented. Numerical studies have been conducted on three point bending concrete beams under constant amplitude loading. The predicted remaining life values with the combination of tension softening & size effects are in close agreement with the corresponding experimental values available in the literature for all the tension softening models.

A methodology for remaining life prediction of concrete structural components accounting for tension softening effect

  • Murthy, A. Rama Chandra;Palani, G.S.;Iyer, Nagesh R.;Gopinath, Smitha
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.261-277
    • /
    • 2008
  • This paper presents methodologies for remaining life prediction of plain concrete structural components considering tension softening effect. Non-linear fracture mechanics principles (NLFM) have been used for crack growth analysis and remaining life prediction. Various tension softening models such as linear, bi-linear, tri-linear, exponential and power curve have been presented with appropriate expressions. A methodology to account for tension softening effects in the computation of SIF and remaining life prediction of concrete structural components has been presented. The tension softening effects has been represented by using any one of the models mentioned above. Numerical studies have been conducted on three point bending concrete structural component under constant amplitude loading. Remaining life has been predicted for different loading cases and for various tension softening models. The predicted values have been compared with the corresponding experimental observations. It is observed that the predicted life using bi-linear model and power curve model is in close agreement with the experimental values. Parametric studies on remaining life prediction have also been conducted by using modified bilinear model. A suitable value for constant of modified bilinear model is suggested based on parametric studies.

Characteristics of solutions in softening plasticity and path criterion

  • Chen, G.;Baker, G.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.141-152
    • /
    • 2003
  • Characteristics of solutions of softening plasticity are discussed in this article. The localized and non-localized solutions are obtained for a three-bar truss and their stability is evaluated with the aid of the second-order work. Beyond the bifurcation point, the single stable loading path splits into several post-bifurcation paths and the second-order work exhibits several competing minima. Among the multiple post-bifurcation equilibrium states, the localized solutions correspond to the minimum points of the second-order work, while the non-localized solutions correspond to the saddles and local maximum points. To determine the real post-bifurcation path, it is proposed that the structure should follow the path corresponding to the absolute minimum point of the second-order work. The proposal is further proved equivalent to Bazant's path criterion derived on a thermodynamics basis.

Preparation of pitch from pyrolized fuel oil by electron beam radiation and its melt-electrospinning property

  • Jung, Jin-Young;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.2
    • /
    • pp.129-135
    • /
    • 2014
  • Spinnable pitch for melt-electrospinning was obtained from pyrolized fuel oil by electron beam (E-beam) radiation treatment. The modified pitch was characterized by measuring its elemental composition, softening point, viscosity, molecular weight, and spinnability. The softening point and viscosity properties of the modified pitch were influenced by reforming types (heat or E-beam radiation treatment) and the use of a catalyst. The softening point and molecular weight were increased in proportion to absorbed doses of E-beam radiation and added $AlCl_3$ due to the formation of pitch by free radical polymerization. The range of the molecular weight distribution of the modified pitch becomes narrow with better spinning owing to the generated aromatic compounds with similar molecular weight. The diameter of melt-electrospun pitch fibers under applied power of 20 kV decreased 53% ($4.7{\pm}0.9{\mu}m$) compared to that of melt-spun pitch fibers ($10.2{\pm}2.8{\mu}m$). It is found that E-beam treatment for reforming could be a promising method in terms of time-savings and cost-effectiveness, and the melt-electrospinning method is suitable for the preparation of thinner fibers than those obtained with the conventional melt-spinning method.