• 제목/요약/키워드: Soft-switching boost converter

Search Result 181, Processing Time 0.022 seconds

Novel ZVZCS PWM DC-DC Converters with One Auxiliary Switch (단일 보조 스위치를 이용한 새로운 ZVZCS PWM DC-DC 컨버터)

  • 유승희;이동윤;유상봉;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.28-32
    • /
    • 1998
  • This paper presents novel ZVZCS PWM DC-DC converters. The proposed soft-switching technique achieves ZVS and ZCS simultaneously at both turn-on and turn-off of the main switch and diode by using only one auxiliary switch. Also, the proposed soft-switching technique is suitable for not only minority but also majority carrier semiconductor devices. The auxiliary circuit of the proposed topology is placed out the main power path and therefore, there are no voltage/current stresses on the main switch and diode. The operating principle of the proposed circuit is illustrated by a detailed study with the boost converter as an example. The validity of the proposed converter is verified by theoretical analysis, simulation and experiment results.

  • PDF

A novel PFC AC/DC converter for reducing conduction losses (도통손실 저감형 역률 보상 AC/DC 컨버터)

  • Kang, Feel-Soon;Choi, Cheul;Park, Sung-Jun;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.2
    • /
    • pp.52-58
    • /
    • 2000
  • This paper presents a novel power factor corrected(PFC) single-stage AC/DC half-bridge converter, which features discontinuous conduction mode(DCM) and soft-switching. The reduced conduction losses are achieved by the employment of a novel powder factor correction circuitry, instead of the conventional configuration composed of a front-end rectifier followed by a boost converter. To identify the validity of the proposed converter, simulated results of 500[W] converter with 100[V] input voltage and 50[V]output voltage are presented.

  • PDF

High Efficiency Power Conversion Device for Photovoltaic Power Generation (태양광 발전을 위한 고효율 전력변환장치)

  • Kim, Young-Cheal;Suh, Ki-Young;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.450-452
    • /
    • 1996
  • In this paper, the authors propose a DC-DC boost converter of high efficiency by partial resonant switching mode, the switching devices in a proposed circuit are operated with soft switching and the control technique of those is simplified for switch to drive in constant duty cycle. The circuit has a merit which is taken to increase of efficiency, as it makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber inconventional circuit. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

Improved Zero-Current-Switching(ZCS) PWM Switch Cell with Minimum Additional Conduction Losses

  • Park, Hang-Seok;Cho, B.H.
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.71-77
    • /
    • 2001
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of DC to DC PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of DC to DB PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5 kW prototype converter operating at 40 kHz.

  • PDF

Improved full wave mode ZVT-PWM DC-DC Converters (개선된 전파형 ZVT-PWM DC-DC 컨버터)

  • Kim T.W.;Kang A.J.;Chin G.H.;Kim H.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.777-780
    • /
    • 2003
  • In this paper, an improved full wave mode ZVT-PWM DC-DC Converter is presented to maximize the regeneration ratio of resonant energy by only putting an additional diode in series with auxiliary switch. The operation of auxiliary switch in a half wave mode makes possible the soft switching condition of all switches. Furthermore, the increase of the regeneration ratio to resonant energy results in low conduction losses and minimum voltage and current stresses. The operation principles of the proposed converters are analyzed using the PWM boost converter topology as an example. Theoretically analysis and experimental results verify the validity of the boost converter topology with the proposed full wave mode ZVT-PWM converters

  • PDF

Pulse-width Adjustment Strategy for Improving the Dynamic Inductor Current Response Performance of a Novel Bidirectional DC-DC Boost Converter

  • Li, Mingyue;Yan, Peimin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.34-44
    • /
    • 2018
  • This paper presents a pulse-width adjustment (PWA) strategy for a novel bidirectional DC-DC boost converter to improve the performance of the dynamic inductor current response. This novel converter consists of three main components: a full-bridge converter (FBC), a high-frequency isolated transformer with large leakage inductance, and a three-level voltage-doubler rectifier (VDR). A number of scholars have analyzed the principles, such as the soft-switching performance and high-efficiency characteristic, of this converter based on pulse-width modulation plus phase-shift (PPS) control. It turns out that this converter is suitable for energy storage applications and exhibits good performance. However, the dynamic inductor current response processes of control variable adjustment is not analyzed in this converter. In fact, dc component may occur in the inductor current during its dynamic response process, which can influence the stability and reliability of the converter system. The dynamic responses under different operating modes of a conventional feedforward control are discussed in this paper. And a PWA strategy is proposed to enhance the dynamic inductor current response performance of the converter. This paper gives a detailed design and implementation of the PWA strategy. The proposed strategy is verified through a series of simulation and experimental results.

A Bidirectional Three-phase Push-pull Zero-Voltage Switching DC-DC Converter (양방향 3상 푸쉬풀 ZVS DC-DC 컨버터)

  • Kwon, Min-Ho;Han, Kook-In;Park, Jung-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.403-411
    • /
    • 2013
  • This paper proposes an isolated bidirectional three-phase push-pull dc-dc converter for high power application such as eco-friendly vehicles, renewable energy systems, energy storage systems, and solid-state transformers. The proposed converter achieves ZVS turn-on of all switches and volume of passive components is small by an effect of three-phase interleaving. The proposed converter has identical switching pattern for both boost and buck mode, and therefore can provide seamless characteristic at the mode transition. A 3kW prototype of the proposed converter has been built and tested to verify the validity of the proposed operation.

New Family of Zero-Current-Switching (ZCS) PWM Converters (새로운 영전류 스위칭 PWM 컨버터)

  • Choi, Hang-Seok;Moon, S.J.;Cho, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.946-949
    • /
    • 2001
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of dc to dc PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of dc to dc PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5 kW prototype boost converter operating at 40kHz.

  • PDF

The High efficiency Buck Power Conversion System for Photovoltaic Power Generator (태양광발전을 위한 고효율 승압형 전력변환장치)

  • 박경원;김영철;김준홍;서기영;고희석;이현우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.88-92
    • /
    • 1997
  • Power conversion system must be increased swiching frequency in order to achieve a small size, a light weight and a low noise, However, the swiches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. In this paper, the authors propose a DC-DC boost converter of high power by partial resonant switch method (PRSM). The switching devices in a proposed circuit are operated with soft swiching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor suing step up and a condenser of loss-less snubber. Also the circuit has a merit which is taken to increase of efficiency, as if makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber in conventional cirvuit. The result is the the switching loss is very low and the efficiency of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

High Step-up Interleaved CCM-ZVZCS Converters (고승압 인터리빙 CCM-ZVZCS 컨버터)

  • Park, Yo-Han;Choi, Se-Wan;Choi, Woo-Jin;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.114-121
    • /
    • 2011
  • This paper proposes a soft-switching interleaved boost converter which is suitable for high step-up and high power applications. Compared to the conventional boost converter the proposed converter can achieve approximately doubled voltage gain using the same duty cycle. The voltage ratings of the switch and diode are reduced to half, which result in the use of devices with lower $R_{DS(ON)}$ and on drop leading to reduced conduction losses. Also, voltage ratings of the passive components are reduced, and therefore the total energy volume is reduced to half. Further, the switch is turned on with ZVS in the CCM operation, and the diode is turned off with ZCS which results in negligible surge caused by diode reverse recovery leading to reduced switching losses. The validity of the proposed converter is proved through a 2kW prototype.