• Title/Summary/Keyword: Soft-switching Inverter

Search Result 199, Processing Time 0.045 seconds

Performance Evaluations of Quasi Resonant DC Link Assisted Three Phase Soft Switching Inverter for AC Servo Motor Drive

  • Yoshitsugu J.;Ando M.;Rukonuzzaman M.;Hiraki E.;Nakaoka M.;Inoue K.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.232-235
    • /
    • 2001
  • This paper presents a circuit of the quasi-resonant DC link to achieve soft-switching three phase inverter using intelligent IGBT power module. The soft-switching operation in this circuit is confirmed simulation and experimental results. Its conductive noise is measured for electrical AC motor drive as compared with that of the conventional hard switching inverter.

  • PDF

Controlled-Type ZVS Technique without Auxiliary Components for Micro-inverters

  • Zhang, Qian;Zhang, Dehua;Hu, Haibing;Shen, John;Batarseh, Issa
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.919-927
    • /
    • 2013
  • This paper proposes a Boundary Current Mode (BCM) control scheme to realize soft switching on a conventional single phase full bridge DC/AC inverter. This technique with the advantages of no auxiliary components, low cost, high efficiency, and simple in control, is attractive for micro-inverter applications. The operation principle and characteristic waveforms of the proposed soft switching technique are analyzed in theory. A digital controller is provided based on that theory. To balance the requirements of efficiency, switching frequency, and inductor size, the design considerations are discussed in detail to guide in BCM inverter construction. A 150W prototype is built under these guidelines to implement the BCM control scheme. Simulation and experiment results demonstrate the feasibilities of the proposed soft switching technique.

Zero Voltage Soft Switching PWM High-Frequency Inverter with Active Inductor Snubber for Induction Heated Roller in New Type Copy Machine

  • Muraoka S.;Feng Y.L.;Kunimoto H.;Chandhaket S.;Okuno A.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.75-79
    • /
    • 2001
  • This paper presents a novel version of an active voltage clamped ZVS-PWM high frequency inverter using IGBTs for electromagnetic induction eddy current-based rolling drum heating in new generation copy and printing machines in consumer business use. The operating principle of this inverter circuit and unique features are described herein. Its constant frequency duty cycle (asymmetrical PWM) controlled voltage source quasi-resonant soft switching high frequency inverter employing IGBTs is proposed, which is capable of achieving stable and efficient zero voltage soft switching commutation over a widely specified power regulation range from full power to low power. The operating performances in a steady state of this inverter is discussed and evaluated on basis of simulation and experimental results as an induction heated roller in new generation copy machine.

  • PDF

DUAL DUTY CYCLE CONTROLLED SOFT-SWITCHING HIGH FREQUENCY INVERTER USING AUXILIARY REVERSE BLOCKING SWITCHED RESONANT CAPACITOR

  • Bishwajit, Saha;Suh, Ki-Young;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.129-131
    • /
    • 2006
  • This paper presents a new ZVS-PWM high frequency inverter. The ZVS operation is achieved in the whole load range by using a simple auxiliary reverse blocking switch in parallel with series resonant capacitor. The operating principle and the operating characteristics of the new high frequency circuit treated here are illustrated and evaluated on the basis of simulation results. It was examined that the complete soft switching operation can be achieved even for low power setting ranges by introducing the high frequency dual duty cycle control scheme. In the proposed high frequency inverter treated here, the dual mode pulse modulation control strategy of the asymmetrical PWM in the higher power setting ranges and the lower power setting ones, the output power of this high frequency inverter could introduce in order to extend soft switching operation ranges. Dual duty cycle is used to provide a wide range of output power regulation that is important in many high frequency inverter applications. It is more suitable for induction heating applications the operation and control principle of the proposed high frequency inverter are described and verified through simulated results.

  • PDF

Feasible Power Loss Analysis and Estimation of Auxiliary Resonant DC Link Assisted Soft-Switching Inverter with New Zero Vector Generation Method

  • Manabu Kurokawa;Claudio Y. Inaba;M. Rukonuzzaman;Eiji Hiraki;Yoshihiro Konishi;Mutsuo Nakaoka
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.77-87
    • /
    • 2002
  • The purpose of this paper is to improve power conversion efficiency of three-phase soft-switching voltage-source inverter with an auxiliary resonant dc link (ARDCL) snubber circuit. Firstly, the operation principle of ARDCL snubber circuit is described. Secondly, this paper proposes an effictive generation method of zero voltage vector for three-phase voltage-source soft-switching inverter in power losses in which power losses in the ARDCL snubber circuit can be reduced. In particular, zero voltage holding interval in the inverter DC busline can be controlled due to the new generation scheme of zero voltage vector. Thirdly, a simulator for power loss analysis for power loss characteristics based on actual system, is developed. the validity of developed. The validity of developed simulator of proved with experimental results. Finally, power efficency of three-phase inverter is estimated according to high carrier frequency by using the simulatior.

A Novel Induction Heating Type Super Heated Vapor Steamer using Dual Mode Phase Shifted PWM Soft Switching High Frequency Inverter

  • Sugimura, Hisayuki;Eid, Ahmad;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.774-777
    • /
    • 2005
  • In this paper, a constant frequency phase shifting PWM controlled voltage source full bridge-type series load resonant high-frequency inverter using the IGBT power modules is presented for innovative consumer electromagnetic induction heating applications such as a hot water producer, steamer and super heated steamer. The full bridge arm side link passive quasi-resonant capacitor snubbers in parallel with the each power semiconductor device and high frequency AC load side linked active edge inductive snubber-assisted series load resonant tank soft switching inverter with a constant frequency phase shifted PWM control scheme is discussed and evaluated on the basis of the simulation and experimental results. It is proved from a practical point of view that the series load resonant and edge resonant hybrid high-frequency soft switching PWM inverter topology, what is called class DE type. including the variable-power variable-frequency(VPVF) regulation function can expand zero voltage soft switching commutation range even under low output power setting ranges, which is more suitable and acceptable for induction heated dual packs fluid heater developed newly for consumer power utilizations. Furthermore, even in the lower output power regulation mode of this high-frequency load resonant tank high frequency inverter circuit it is verified that this inverter can achieve ZVS with the aid of the single auxiliary inductor snubber.

  • PDF

Constant Frequency Adjustable Power Active Voltage Clamped Soft Switching High Frequency Inverter using The 4th-Generation Trench-Gate IGBTs

  • Miyauchi T.;Hirota I.;Omori H.;Terai H.;Abdullah Al Mamun;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.236-241
    • /
    • 2001
  • This paper presents a novel prototype of active voltage-clamping capacitor-assisted edge resonant soft switching PWM inverter operating at a constant frequency variable power (VPCF) regulation scheme, which is suitable for consumer high-power induction-heating cooking appliances. New generation IGBT with a trench gate is particularly improved in order to reduce conduction loss due to its lowered saturation voltage characteristics. The soft switching load resonant and quasi-resonant inverter designed distinctively using the latest IGBTs is evaluated from an experimental point of view.

  • PDF

A Novel Soft-Switching PWM DC/DC Converter with DC Rail Series Switch-Parallel Capacitor Edge Resonant Snubber Assisted by High-Frequency Transformer Parasitic Components

  • Fathy, Khairy;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents two new circuit topologies of DC bus lineside active edge resonant snubber assisted soft-switching PWM full-bridge DC-DC converter acceptable for either utility AC 200V-rms or AC 400V-rms input voltage source. One topology of proposed DC-DC converters is composed of a typical voltage source-fed full-bridge high frequency PWM inverter using DC busline side series power semiconductor switching devices with the aid of a parallel capacitive lossless snubber. All the active power switches in the full-bridge arms and DC busline can achieve ZCS turn-on and ZVS turn-off commutations and the total turn-off switching power losses of all active switches can be reduced for high-frequency switching action. It is proved that the more the switching frequency of full-bridge soft switching inverter increases, the more soft-switching PWM DC-DC converter with a hish frequency transformer link has remarkable advantages for its efficiency and power density as compared with the conventional hard-switching PWM inverter type DC-DC converter

  • PDF

Basic Study of a Phase-Shifted Soft Switching High-Frequency Inverter with Boost PFC Converter for Induction Heating

  • Kawaguchi, Yuki;Hiraki, Eiji;Tanaka, Toshihiko;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.192-199
    • /
    • 2008
  • This paper is mainly concerned with a high frequency soft-switching PWM inverter suitable for consumer induction heating systems. The proposed system is composed of a soft switching chopper based boost PFC converter stage with passive snubber and phase shifted PWM controlled full bridge ZVZCS high frequency inverter stage. Its fundamental operating performances are illustrated and evaluated in the experimental results. Its effectiveness is substantially proved on the basis of the experimental results from a practical point of view.

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.