• Title/Summary/Keyword: Soft-switched

Search Result 100, Processing Time 0.027 seconds

Current Control Scheme of High Speed SRM Using Low Resolution Encoder

  • Khoi, Huynh Khac Minh;Ahn, Jin-Woo;Lee, Dong-Hee
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2011
  • This paper presents a balanced soft-chopping circuit and a modified PI controller for a high speed 4/2 Switched Reluctance Motor (SRM) with a 16 pulse per revolution encoder. The proposed balanced soft-chopping circuit can supply double the switching frequency in the fixed switching frequency of power devices to reduce current ripple. The modified PI controller uses maximum voltage, back-emf voltage and PI control modes to overcome the over-shoot current due to the time delay effect of current sensing. The maximum voltage mode can supply a fast excitation current with consideration of the hardware time delay. Then the back-emf voltage mode can suppress the current over-shoot with consideration of the feedback signal delay. Finally, the PI control mode can adjust the phase current to a desired value with a fast switching frequency due to the proposed balanced soft-chopping technology.

A Study on Hight Efficiency Inverter Ballast using Microprocessor (마이크로프로세서를 사용한 고효율 인버터 안정기에 관한 연구)

  • ;鄭載倫
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.2
    • /
    • pp.220-220
    • /
    • 1999
  • This paper describes the high efficiency inverter ballast circuit using very cheap microprocessor, which has been developed by the author. A variety of soft-switching techniques have been proposed to reduce the switching losses and EMI problems that occur with higher switching frequencies in switched inverter ballast. The inverter ballast circuit, which employs a temperature sensing circuits has been also proposed to improve starting performance of the fluorescent lamps. That is, the inverter ballast circuit, which employs a soft-starting circuit and soft-switching techniques to implement the power factor correction and to mitigate of power-loss and increase a life time of the fluorescent lamps, has become an attractive performance for ballasting the fluorescent lamps. In this paper, the operation and the control of the inverter ballast are described in detail and experimental results are presented. As the experimental results, when environment temperature is at -40℃, the inverter ballast circuit has low THD(4.8%) of the input current and large power factor(98%) of the lamp current. The proposed improved ballast circuit appears to be a good performance for ballasting fluorescent lamps.

A New Soft-Switching Three-Level Flying Capacitor Converter (새로운 소프트스위칭 3레벨 Flying Capacitor 컨버터)

  • Kim, Jae-Hoon;Kim, Sun-Ju;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.484-489
    • /
    • 2020
  • This study proposes a new soft-switching three-level flying capacitor converter with low filter inductance. The proposed converter can achieve zero voltage switching (ZVS) turn-on of all switches by using auxiliary components La and Ca. It can also reduce filter inductance because the applied voltage of the filter inductor is decreased by using the flying capacitor. Furthermore, filter inductance can be reduced because the operating frequency of the filter inductor is doubled by the phase shifting between switches S3 and S4. The operation principle, design of passive components for ZVS turn-on, interleaving effects, and comparison of different topologies are presented. The experimental waveforms of a 1 kW two-phase interleaved converter prototype are provided to verify the validity of the proposed converter.

A New Soft-switched PWM Boost Converter with a Lossless Auxiliary Circuit (스위칭 손실 없는 보조회로를 이용한 고효율 부우스트 컨버터 설계)

  • Choi, Hyun-Chil
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.149-158
    • /
    • 2006
  • A soft-switching scheme for the PWM boost converter, ZCT (Zero current transition : ZCT) boost converter Is newly proposed to obtain the desirable features of both the conventional BWM boost and resonant converters such as easy of control, reduced switching losses and stresses, an4 low EMI. In order to achieve the soft-switching action, the proposed scheme employs an auxiliary circuit, which is added to the conventional boost converter and used to achieve soft-switching for both the main switch and the output diode while not incurring any additional losses due to auxiliary circuit itself. The basic operations, in this paper, we discussed and design guidelines are presented. Through a 100kHz, 60-W prototype, the usefulness of the proposed scheme is verified.

Bidirectional Power Conversion of Isolated Switched-Capacitor Topology for Photovoltaic Differential Power Processors

  • Kim, Hyun-Woo;Park, Joung-Hu;Jeon, Hee-Jong
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1629-1638
    • /
    • 2016
  • Differential power processing (DPP) systems are among the most effective architectures for photovoltaic (PV) power systems because they are highly efficient as a result of their distributed local maximum power point tracking ability, which allows the fractional processing of the total generated power. However, DPP systems require a high-efficiency, high step-up/down bidirectional converter with broad operating ranges and galvanic isolation. This study proposes a single, magnetic, high-efficiency, high step-up/down bidirectional DC-DC converter. The proposed converter is composed of a bidirectional flyback and a bidirectional isolated switched-capacitor cell, which are competitively cheap. The output terminals of the flyback converter and switched-capacitor cell are connected in series to obtain the voltage step-up. In the reverse power flow, the converter reciprocally operates with high efficiency across a broad operating range because it uses hard switching instead of soft switching. The proposed topology achieves a genuine on-off interleaved energy transfer at the transformer core and windings, thus providing an excellent utilization ratio. The dynamic characteristics of the converter are analyzed for the controller design. Finally, a 240 W hardware prototype is constructed to demonstrate the operation of the bidirectional converter under a current feedback control loop. To improve the efficiency of a PV system, the maximum power point tracking method is applied to the proposed converter.

Braking Torque Closed-Loop Control of Switched Reluctance Machines for Electric Vehicles

  • Cheng, He;Chen, Hao;Yang, Zhou;Huang, Weilong
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.469-478
    • /
    • 2015
  • In order to promote the application of switched reluctance machines (SRM) in electric vehicles (EVs), the braking torque closed-loop control of a SRM is proposed. A hysteresis current regulator with the soft chopping mode is employed to reduce the switching frequency and switching loss. A torque estimator is designed to estimate the braking torque online and to achieve braking torque feedback. A feed-forward plus saturation compensation torque regulator is designed to decrease the dynamic response time and to improve the steady-state accuracy of the braking torque. The turn-on and turn-off angles are optimized by a genetic algorithm (GA) to reduce the braking torque ripple and to improve the braking energy feedback efficiency. Finally, a simulation model and an experimental platform are built. The simulation and experimental results demonstrate the correctness of the proposed control strategy.

Online Turn-Off Angle Contro1 for Performance Optimization of the Switched Reluctance Motor (온라인 턴 오프각제어를 통한 SRM의 성능최적화)

  • Jeong, Byeong-Ho;Choi, Youn-Ok;Lee, Kang-Yeon;Cho, Geum-Bae;Chung, Soo-Bok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.98-106
    • /
    • 2007
  • This paper represent improved on-line turn off angle control schemes for switched reluctance motors based on current control. For the purpose of finding the optimal commutation switching angle point with improved controller, it is utilized turn on and turn off position calculation with inductance vs. current vs. not linkage analysis method. The goal of proposed paper is the maximization of the energy conversion per stroke and torque ripple reduction and obtaining approximately flat-topped current waveform. The proposed control scheme is demonstrated simulation and on a prototype experimental system.

THE CLAMP MODE FORWARD ZERO-VOLTAGE-SWITCHING MULTI-RESONANT-CONVERTER (CLAMP MODE에서 동작하는 ZVS-MRC FORWARD 콘버어터에 관한 연구)

  • Kim, Hee-Jun;Simun, Misri
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.210-213
    • /
    • 1991
  • The clamp mode Zero-Volatge-Switched Multi-Resonant-Converter(ZVS-MRC) is proposed. In the converter, the performance of the conventional ZVS-MRC is improved by clamping the drain-to-source voltage of the power switch using a soft switching nondissipative active clamp network. The analysis for each stage of the converter operation modes is presented and is verified by experiments.

  • PDF

Analysis of Resonant Characteristics in Asymmetrical Control Half Bridge Converter (하프 브리지 컨버터의 비대칭 제어 공진 특성 분석)

  • Ahn J.R.;Kwon M.I.;Jang D.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.58-61
    • /
    • 2003
  • In this paper, resonant Characteristics of the soft switched asymmetrical half bridge converter is analysis. The operation principle for proposed converter is explained in steady state and its circuit is analyzed by means of equivalent circuit. Experimental results carried out on a system prototype are included in this paper.

  • PDF

A Fully Soft Switched Full Bridge DC-DC converter (보조회로도 영전압영전류스위칭하는 DC-DC 변환기)

  • Jeon, Seong-Jeub;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2512-2514
    • /
    • 1999
  • A new zero voltage and zero current switching(ZVZCS) full bridge DC-DC converter with transformer isolation is proposed for arc welding machines. The proposed DC-DC converter uses an auxiliary transformer to obtain ZCS for leading leg, which provides load current control capability even in short circuit condition. The auxiliary circuit also operates in ZVZCS mode. The power rating of the auxiliary transformer is about 10% of the main transformer. The operation is verified by experiments for 12[KW] prototype.

  • PDF