• Title/Summary/Keyword: Soft-solution process

Search Result 54, Processing Time 0.028 seconds

Improvement in Electrical Characteristics of Solution-Processed In-Zn-O Thin-Film Transistors Using a Soft Baking Process (Soft-Baking 처리를 통한 용액 공정형 In-Zn-O 박막 트랜지스터의 전기적 특성 향상)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.566-571
    • /
    • 2017
  • A soft baking process was used to enhance the electrical characteristics of solution-processed indium-zincoxide (IZO) thin-film transistors (TFTs). We demonstrate a stable soft baking process using a hot plate in air to maintain the electrical stability and improve the electrical performance of IZO TFTs. These oxide transistors exhibited good electrical performance; a field-effect mobility of $7.9cm^2/Vs$, threshold voltage of 1.4 V, sub-threshold slope of 0.5 V/dec, and a current on/off ratio of $2.9{\times}10^7$ were measured. To investigate the static response of our solutionprocessed IZO TFTs, simple resistor load type inverters were fabricated by connecting a resistor (5 or $10M{\Omega}$). Our IZO TFTs, which were manufactured using the soft baking process at a baking temperature of $120^{\circ}C$, performed well at the operating voltage, and are therefore a good candidate for use in advanced logic circuits and transparent display backplanes.

Effect of Polymer Content on Synthesis Process and Microstructure of Alumina-Zirconia Composite (알루미나-지르코니아 복합체의 제조공정 및 미세구조에 미치는 폴리머 첨가의 영향)

  • 이상진;권명도;이충효;조경식
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.310-317
    • /
    • 2003
  • Two-component ceramic (alumina-zirconia) composites were fabricated by a soft-solution process in which polyethylene glycol (PEG) was used as a polymeric carrier. Metal salts and PEG were dissolved in ethyl alcohol without any precipitation in 1:1 volume ratio of alumina and zirconia. In the non-aqueous system, the flammable solvent made explosive, exothermic reaction during drying process. The reaction resulted in formation of volume expanded, porous precursor powders by a vigorous decomposition of organic components in the precursor sol. The PEG content affected the grain size of sintered composites as well as the morphology of precursor powders. The difference of microstructure in sintered composite was attribute to the solubility and homogeneity of metal cations in precursor sol. At the optimum amount of the PEG polymer, the metal ions were dispersed effectively in solution and a homogeneous polymeric network was formed. It made less agglomerated particles in the precursor sol and affected on uniform grain size in sintered composite.

Effect of Soft-annealing on the Properties of CIGSe Thin Films Prepared from Solution Precursors

  • Sung, Shi-Joon;Park, Mi Sun;Kim, Dae-Hwan;Kang, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1473-1476
    • /
    • 2013
  • Solution-based deposition of $CuIn_xGa_{1-x}Se_2$ (CIGSe) thin films is well known non-vacuum process for the fabrication of CIGSe solar cells. However, due to the usage of organic chemicals in the preparation of CIG precursor solutions, the crystallization of the polycrystalline CIGSe and the performance of CIGSe thin film solar cells were significantly affected by the carbon residues from the organic chemicals. In this work, we have tried to eliminate the carbon residues in the CIG precursor thin films efficiently by using soft-annealing process. By adjusting soft-annealing temperature, it is possible to control the amount of carbon residues in CIG precursor thin films. The reduction of the carbon residues in CIG precursors by high temperature soft-annealing improves the grain size and morphology of polycrystalline CIGSe thin films, which are also closely related with the electrical properties of CIGSe thin film solar cells.

Determining the Proportions of Bone and Cartilage Growth in the Crucian Carp (carassius auratus) Using the Modified Simultaneous Differential Staining Technique

  • Lee, Jin-Heon
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.4
    • /
    • pp.337-341
    • /
    • 2010
  • The modified simultaneous differential staining technique, which enables double staining of cartilage and bones, needs to be improved to prevent soft tissues from being damaged during the staining process. Key factors influencing the extent to which soft tissues are damaged include the fixative used, macerating time, potassium hydroxide concentration, incubation temperature and the removal of skin from specimens. Here we describe a protocol that enables the hardening of tissues during bleaching and maceration. We also describe a method for objectively measuring rates of cartilage and bone growth. The use of formalin as a fixative rendered soft tissues more rigid due to the resulting chemical bonds formed between proteins. Blotted specimens were immersed in 1% potassium hydroxide (KOH) and incubated at $37^{\circ}C$ for 1 day (smaller specimens) or 2-3 days (larger specimens). The 1% KOH solution was also used as the diluent solution for the subsequent immersion in a graded series of 30%, 50%, 70%, 90%, 100% glycerol solutions, a procedure that made soft tissues even more transparent and hardened. It was not necessary to remove the skin of specimens shorter than 2 cm, since the macerating solution could easily penetrate their thin skin layer and continuously remove those pigments hindering visibility. Since excessive osmosis is another factor that can damage soft tissues in the macerating process by causing the rupture of those cells not able to withstand the osmotic pressure, here it was minimized by balancing the salt concentration between the interior and exterior of cells with the addition of 0.9% sodium chloride (NaCl) in the macerating solution. Finally, to determine the proportions of cartilage and bone growth, photographs of the stained specimens were taken with a dissecting microscope and sections corresponding to the cartilage and bones were cut out from the printed pictures and weighed. Our results show that this method is suitable for the objective evaluation of bone and cartilage growth.

Elution Properties of Naringin from Soft Contact Lens Containing Naringin (나린진(naringin)이 함유된 소프트 콘택트렌즈에서 나린진의 용출 특성)

  • Ryu, Geun-Chang;Jun, Jin;Jin, Moon-Seok;Chae, Soo-Chul;Kim, In-Suk
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.45-50
    • /
    • 2008
  • Purpose: A soft contact lens was manufactured by adding naringin known as natural anti-bacterial material to resin solution. With solution eluted from manufactured contact lens, we examined its optical properties, physical and chemical states of naringin in the polymer, and elution properties. Methods: The soft contact lens with naringin was synthesized by bulk polymerization method. IR spectrum and HPLC were used to define the bonding type of naringin itself in the soft contact lens contained naringin, elution process of naringin to the saline solution, and the amount of naringin solution eluted from the lens with elapsed time. Results: Naringin was continuously eluted with constant concentration from the soft contact lens for about a month and the structure ofnaringin which is eluted was as same as before it was added to resin solution. Any change in optical properties such as transmittance couldn't be found. Bonding state and the structure of naringin in contact lens were explained with IR spectrum and HPLC results. Conclusions: In the contact lens with naringin, naringin remained in the contact lens bonding with weak hydrogen bonding and/or van der Waals force between naringin and polymer. Naringin was continuously eluted from the contact lens contained naringin during about 1 month. Even after 1 month, it showed that the concentration of the naringin eluted was approximately 10 ppm in a day. From the results, adding naringin to the soft contact lens resin is very effective method for manufacturing the soft contact lens which has anti-bacterial function for a period of time.

  • PDF

A structural damage detection approach using train-bridge interaction analysis and soft computing methods

  • He, Xingwen;Kawatani, Mitsuo;Hayashikawa, Toshiro;Kim, Chul-Woo;Catbas, F. Necati;Furuta, Hitoshi
    • Smart Structures and Systems
    • /
    • v.13 no.5
    • /
    • pp.869-890
    • /
    • 2014
  • In this study, a damage detection approach using train-induced vibration response of the bridge is proposed, utilizing only direct structural analysis by means of introducing soft computing methods. In this approach, the possible damage patterns of the bridge are assumed according to theoretical and empirical considerations at first. Then, the running train-induced dynamic response of the bridge under a certain damage pattern is calculated employing a developed train-bridge interaction analysis program. When the calculated result is most identical to the recorded response, this damage pattern will be the solution. However, owing to the huge number of possible damage patterns, it is extremely time-consuming to calculate the bridge responses of all the cases and thus difficult to identify the exact solution quickly. Therefore, the soft computing methods are introduced to quickly solve the problem in this approach. The basic concept and process of the proposed approach are presented in this paper, and its feasibility is numerically investigated using two different train models and a simple girder bridge model.

The Effects of Coating Treatments on Enteric Coating of the Soft Capsules Containing Omega-3 Fatty Acids (오메가-3 연질캡슐의 코팅 조건에 따른 장용성 코팅품질에 미치는 영향)

  • Ko, Won-Hwa;Hong, Jun-Kee;Lee, Sung-Wan;Cha, Ja-Hyun;Cha, Jae-Uk;Baek, Hyon-Ho;Park, Hyun-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.168-172
    • /
    • 2012
  • This article presents an evaluation of the effects of coating conditions on the enteric coating quality of soft gelatin capsules containing Omega-3 fatty acids. Three conditions were controlled: concentration of hydroxypropyl methylcellulose phthalate (6, 8, and 10 wt% in solution), temperature of the inlet air (32, 35, and $38^{\circ}C$), and the coating solution feed rate (7.5, 11.25, and 15.0 g/min). The transparency of the enteric coated soft gelatin capsules was evaluated by measuring the degree of whiteness of the surface using a spectrophotometer. Results showed that the most important parameter in the enteric coating process was the coating solution feed rate. As the coating solution feed rate decreased and inlet air temperature increased, the degree of whiteness of coating surfaces decreased. We also evaluated the disintegration properties of the enteric coated capsules in accordance with the Korea Health Functional Food Code.

Synthesis of Hollandite Powders as a Nuclear Waste Ceramic Forms by a Solution Combustion Synthesis (연소합성법을 이용한 방사성폐기물 고화체 Hollandite 분말 합성)

  • Choong-Hwan Jung;Sooji Jung
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.385-392
    • /
    • 2023
  • A solution combustion process for the synthesis of hollandite (BaAl2Ti6O16) powders is described. SYNROC (synthetic rock) consists of four main titanate phases: perovskite, zirconolite, hollandite and rutile. Hollandite is one of the crystalline host matrices used for the disposal of high-level radioactive wastes because it immobilizes Sr and Lns elements by forming solid solutions. The solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between a nitrate and organic fuel, generates an exothermic reaction and that heat converts the precursors into their corresponding oxide products in air. The process has high energy efficiency, fast heating rates, short reaction times, and high compositional homogeneity. To confirm the combustion synthesis reaction, FT-IR analysis was conducted using glycine with a carboxyl group and an amine as fuel to observe its bonding with metal element in the nitrate. TG-DTA, X-ray diffraction analysis, SEM and EDS were performed to confirm the formed phases and morphology. Powders with an uncontrolled shape were obtained through a general oxide-route process, confirming hollandite powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using these methods.

Analytical Approach to Deformation of a Soft Rotary Actuator with Double Curvature Shell Shape (이중 곡률 쉘 모양의 소프트 회전 액추에이터 변형에 대한 수식적 접근)

  • Lee, Young min;Choi, Hyouk ryeol;Koo, Ja choon
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.68-75
    • /
    • 2022
  • In this paper, we considered the deformation shape of the soft rotation actuator as a double curvature shell and proceeded with the analytical development. Since the response of the hyperelastic material has a large nonlinear deformation, the analytical approach is very complicated and the solution cannot be easily obtained. it is assumed that the behavior of the flexible body, which is a superelastic material, takes the form of a double curvature shell, and the formulas for calculating the deformation are simplified. In this process, equilibrium equations in the related coordinate system representing a double curvature shell were derived. In addition, assuming a thin shell, the stress component in the thickness direction was ignored, and the equation was developed by adding the assumption of free rotation without load. In order to verify the analytically calculated value in this way, an experiment was conducted and the results were compared.

A high-effective method to separate nicotine from the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) mixtures using electrodialysis

  • Ge, Shaolin;Li, Wei;Zhang, Zhao;Li, Chuanrun;Wang, Yaoming
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.245-257
    • /
    • 2017
  • The separation of nicotine and tobacco-specific N-nitrosamines is a tough problem in tobacco industry. In this study, separation of nicotine from 4-(methylnitrosamino) -1-(3-pyridyl)-1-butanone (NNK) mixtures was investigated using electrodialysis by taking the principle of the protonation status difference between these two components. The results indicated that the solution pH has a dominant impact on the separation process. In a pH range of 5-7, nicotine molecules are existed as mono- and di-protonated ions and can be separated from the uncharged NNK molecules. The acidic electrolyte is conducive to the separation process from the point of flux and energy consumption; while the alkaline electrolyte has negative impact on the separation process. A current density of $10mA/cm^2$ is an appropriate value for the separation process. The lowest energy consumption of the separation process is 0.58 kWh/kg nicotine with the process cost to be estimated at only $0.208 /kg nicotine. Naturally, electrodialysis is a high-efficiency, cost-effective, and environmentally friendly process to separate and purify nicotine from tobacco juice.