• Title/Summary/Keyword: Soft switching PWM

Search Result 241, Processing Time 0.02 seconds

Improved Zero-Current-Switching(ZCS) PWM Switch Cell with Minimum Additional Conduction Losses

  • Park, Hang-Seok;Cho, B.H.
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.71-77
    • /
    • 2001
  • This paper proposes a new zero-current switching (ZCS) pulse-width modulation (PWM) switch cell that has no additional conduction loss of the main switch. In this cell, the main switch and the auxiliary switch turn on and turn off under zero current condition. The diodes commutate softly and the reverse recovery problems are alleviated. The conduction loss and the current stress of the main switch are minimized, since the resonating current stress of the main switch are minimized, since the resonating current for the soft switching does not flow through the main switch. Based on the proposed ZCS PWM switch cell, a new family of DC to DC PWM converters is derived. The new family of ZCS PWM converters is suitable for the high power applications employing IGBTs. Among the new family of DC to DB PWM converters, a boost converter was taken as an example and has been analyzed. Design guidelines with a design example are described and verified by experimental results from the 2.5 kW prototype converter operating at 40 kHz.

  • PDF

Improved Full Wave Mode ZVT PWM DC-DC Converters (개선된 전파형 ZVT PWM DC-DC 컨버터)

  • 김태우;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.10-16
    • /
    • 2004
  • In this thesis, improved full wave mode ZVT(Zero-Voltage-Transition) PMW DC-DC Converters are presented to maximize the regeneration ratio of resonant energy by only putting an additional diode In series with the auxiliary switch. The operation of the auxiliary switch in a half wave mode makes it possible soft switching operation of all switches including the auxiliary switch whereas it is turned off with hard switching in conventional converter. The increase of the regeneration ratio to resonant energy results in low commutation losses and minimum voltage and current stresses. The operation principles of the improved ZVT PWM DC-DC Converters are theoretically analyzed using the boost converter topology as an example. Both theoretical analysis and experimental results verify the validity of the PWM boost converter topology with the improved full wave mode ZVT PWM converters.

A Simple Resonant DC Link Snubber-Assisted Bi-directional Three-phase PWM Converter for Battery Energy Storage Systems

  • Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.133-139
    • /
    • 2002
  • In this paper, a prototype of an active auxiliary quasi-resonant DC link (QRDCL) snubber assisted voltage source bidirectional power converter (AC to DC and DC to AC) operating at zero voltage soft-switching (BVS) PWM nlode is presented for a Battery Energy Storage System (BESS). The operating principle of this QRDCL circuit and multifunctional control-based converter system, including PWM inverter mode in which energy flows from the battery bank to the three-phase utility-grid in addition to an active PWM converter mode in which energy flows from the utility-grid to the battery banks are described respectively by the control implementation on the basis of d-q coordinate plane transformation. The multifunctional operation characteristics of this three-phase ZVS PWM bi-directional converter with QRDCL is demonstrated fer a BESS under the power conditioning and processing schemes of energy supply mode and energy storage mode, and compared with a conventional three-phase hard switching PWM bi-directional converter for a BESS. The effectiveness of the three-phase ZVS PWM hi-directional converter with QRDCL is proven via the simulation analysis.

QUASI-RESONANT ZVS-PWM DC-DC FORWARD CONVERTER WITH ACTIVE CLAMPED CAPACITOR FOR SOLAR PHOTOVOLTAIC ENERGY-DRIVEN BOAT SYSTEM

  • Kenya, Sakamoto;Masakazu, Kanaoka;Hidekazu, Muraoka;Ryuhei, Hojyo;Mutsuo, Nakaoka
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.68-73
    • /
    • 1998
  • This paper presents a novel prototype of active voltage clamped quasi-resonant ZVS-PWM forward DC-DC converter designed for specific low voltage high current application. We establish the soft-switching forward converter with a high frequency isolated link which can efficient operate over wide load ranges under conditions of zero voltage soft-switching and active voltage clamped switching. In addition, we evaluate connection of the soft-switching forward converter with large capacitor which capacitance is over 100[F].

  • PDF

New DC/AC Soft Switched PWM Converter Having a DC-Link Commutation Circuit (직류측에 Commutation 회로를 갖는 영전압 스위칭 PWM 인버터)

  • Chung, J.H.;Park, S.S.;Goo, T.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1158-1160
    • /
    • 1992
  • A new dc/ac soft switched PWM convert having a dc-link commutation circuit is proposed. The commutation circuit implemented by utilizing a series resonant circuit while preparing for zero voltage switching of primary inverter. The converter provides both variable pulse width and position which is fundamentally different than converters. In this paper, the operating principles, design and control considerations analysis of a such a soft switched converter is analyzed.

  • PDF

Soft-Switched Three-Phase Converter with Sinusoidal Input Current and Unity Power Factor (사인파 입력전류와 단위역률을 갖는 Soft-Switched 3상 컨버터)

  • Yoon, Jae-Han;Kim, Bong-Kyu;Lee, Hee-Seung;Seo, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1029-1031
    • /
    • 2001
  • In this paper, we propose a three-phase soft-switching PWM-PFC converter and describe the circuit operations and the experimental results. The proposed converter is constructed by using a resonant network in parallel with the main switch of the conventional PWM converter. A new PWM-PFC converter achieves including the auxiliary switches without increasing their voltage and current stress.

  • PDF

A Novel ZCS PWM Boost Converter with operating Dual Mode (Dual 모드로 동작하는 새로운 ZCS PWM Boost 컨버터)

  • 김태우;김학성
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.346-352
    • /
    • 2002
  • A novel Zero Current Switching(ZCS) Pulse Width Modulation(PWM) boost converter with dual mode for reducing two rectifiers reverse recovery related losses is proposed. The switches of the proposed converter are operating to work alternatively turn-on and turn-off with soft switching condition In the every cycle and the proposed converter reduces the reverse recovery current, which is related switching losses and EMI problems, of the free-wheeling diode$(D_1, D_2)$ by adding the resonant inductor Lr, in series with the switch $S_1$. The switching components$(S_1, S_2, D, D_1)$ in the proposed boost converter are subjected to minimum voltage and current stresses same as those in their PWM counterparts because there are no additional active switches and resonant elements compared with the conventional ZVT PWM $converters^{[2]}$. The operation of the proposed converter, in this paper, is analyzed and to verify the feasibility of the characteristics is built and tested.

ZVS Operating Range Extension Method for High-Efficient High Frequency Linked ZVS-PWM DC-DC Power Converter

  • Sato S.;Moisseev S.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.227-230
    • /
    • 2003
  • In this paper, a full bridge edge-resonant zero voltage mode based soft-switching PWM DC-DC power converter with a high frequency center tapped transformer link stage is presented from a practical point of view. The power MOSFETS operating as synchronous rectifier devices are implemented in the rectifier center tapped stage to reduce conduction power losses and also to extend the transformer primary side power MOSFETS ZVS commutation area from the rated to zero-load without a requirement of a magnetizing current. The steady-state operation of this phase-shift PWM controlled power converter is described in comparison with a conventional ZVS phase-shift PWM DC-DC converter using the diodes rectifier. Moreover, the experimental results of the switching power losses analysis are evaluated and discussed in this paper. The practical effectiveness of the ZVS phase-shift PWM DC-DC power converter treated here is actually proved by using 2.5kW-32kHz breadboard circuit. An actual efficiency of this converter is estimated in experiment and is achieved as 97$\%$ at maximum.

  • PDF

Characteristics Analysis of Soft Switching PWM Converter Using a New Active Snubber (새로운 액티브 스너버를 이용한 소프트 스위칭 PWM 컨버터의 특성해석)

  • Cho, Man-Chul;Mun, Sang-Pil;Kim, Chil-Ryong;Suh, Ki-Young;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.3
    • /
    • pp.44-49
    • /
    • 2007
  • This paper proposes converter that new soft switching active snubber circuit is added, the resonance energy return to life rate doing maximum whole efficiency increase. Proposed converter adds auxiliary switch and resonance inductor, resonance capacitor, two diodes to existing converter, all switch elements play turn-on/turn-off under soft switching condition and minimized switching losses. Conduction loss department is that watch layer bringing back to life resonance energy by input perfectly. These result proved through simulation and an experiment.

Zero Voltage Switching Boost H-Bridge AC Power Converter for Induction Heating Cooker

  • Kwon, Soon-Kurl;Saha, Bishwajit
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.19-27
    • /
    • 2007
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost H-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switch mode equivalent circuits and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft-switching(ZVS) operation ranges, and the power dissipation as compared with those of the conventional type high frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation(PWM) and pulse density modulation(PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.