• Title/Summary/Keyword: Soft switching PWM

Search Result 241, Processing Time 0.041 seconds

A ZCT(Zero-Current-Transition) Boost Converter with Reduced switch losses (ZCT Boost 컨버터의 스위치 손실 저감에 관한 연구)

  • Jung, Myung-Sub;Kim, Yong;Bae, Jin-Yong;Gye, Sang-Bum;Lee, Byung-Song
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.217-219
    • /
    • 2005
  • This paper presents an improved ZCT (Zero-Current-Transition) PWM DC/DC Boost Converter without additional current stress and conduction loss on the main switch during the resonance period of the auxiliary cell. The auxiliary cell consists of a resonance inductor, a resonant capacitor, an auxiliary switch and the Zero-Current-Switching ranges of the main and the auxiliary switch of the proposed converters are entirely achieved by operating the auxiliary cell. Then Improved ZCT soft switching converter will be discussed. Therefore, the proposed converter has a high efficiency. To show the superiority of this converter is verified through the experiment with a 640W, 50kHz prototype converter.

  • PDF

DCM DC-DC Converter for Mobile Devices (모바일 기기용 DCM DC-DC Converter)

  • Jung, Jiteck;Yun, Beomsu;Choi, Joongho
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.319-325
    • /
    • 2020
  • In this paper, a discontinuous-conduction mode (DCM) DC-DC buck converter is presented for mobile device applications. The buck converter consists of compensator for stable operations, pulse-width modulation (PWM) logic, and power switches. In order to achieve small hardware form-factor, the number of off-chip components should be kept to be minimum, which can be realized with simple and efficient frequency compensation and digital soft start-up circuits. Burst-mode operation is included for preventing the efficiency from degrading under very light load condition. The DCM DC-DC buck converter is fabricated with 0.18-um BCDMOS process. Programmable output with external resistors is typically set to be 1.8V for the input voltage between 2.8 and 5.0V. With a switching frequency of 1MHz, measured maximum efficiency is 92.6% for a load current of 100mA.

Evaluation of a Three-Phase Three-Level ZVZCS DC-DC Converter Using Phase-Shift PWM Strategy

  • Kongwirat, Thammachat;Jangwanitlert, Anuwat
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1902-1915
    • /
    • 2017
  • This paper presents the evaluation of a three-phase three-level DC-DC converter which achieves the soft switching condition for all switches in the circuit and uses the phase-shift PWM strategy to adjust electric power at the output side. According to the analysis, the operation modes can be categorized into two cases: in the first case, where the phase shift angle is less than 120 degrees and in the second case, where the phase shift angle is more than 120 degrees. The outer switches of the circuit operate under ZVS condition and the inner switches operate under ZVZCS condition. It has been discovered that under ZCS condition of the inner switches, when the blocking capacitors decrease, they make the voltage across the blocking capacitor higher so the current reduce rapidly. A three-phase three-level DC-DC converter has a maximum efficiency of 93.5% when its load is of 5.7 kW. The results from the experiment have been compared to the results obtained by the $MATLAB^{(R)}$ simulator in order to confirm the validity of the proposed converter.

A New ZVZCS Converter Applicable to Majority and Minority Carrier Devices (다수 및 소수캐리어 소자에 적용 가능한 영전압영전류 스위칭 컨버터)

  • Ahn Hee-Wook;Kim Hack-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.518-525
    • /
    • 2005
  • The paper proposes a novel ZVZCS PWM converter. It enables the main switch to be turned on/off with both zero voltage and zero current, the auxiliary switch to be turned on/off with ZCS, the rectifier diode to be turned on/off with ZVS. Moreover, this proposed soft switching technique is suitable for not only minority carrier device but also majority carrier semiconductor device. Since auxiliary resonant circuit of the proposed boost converter is placed out of the main power path, therefore, there are no voltage and current stresses on the main switch and diode. The operation of the proposed boost converter is explained and analyzed theoretical and experimentally, from a prototype operating at 100KHz.

Effects of a Static Synchronous Series Compensator (SSSC) Based on a Soft Switching 48-Pulse PWM Inverter on the Power Demand from the Grid

  • Ustun, Taha Selim;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • In this paper the effects of a Static Synchronous Series Compensator, which is constructed with a 48-pulse inverter, on the power demand from the grid are studied. Extensive simulation studies were carried out in the MATLAB simulation environment to observe the compensation achieved by the SSSC and its effects on the line voltage, line current, phase angle and real/reactive power. The designed device is simulated in a power system which is comprised of a three phase power source, a transmission line, line inductance and load. The system parameters such as line voltage, line current, reactive power Q and real power P transmissions are observed both when the SSSC is connected to and disconnected from the power system. The motivation for modeling a SSSC from a multi-pulse inverter is to enhance the voltage waveform of the device and this is observed in the total harmonic distortion (THD) analysis performed at the end of the paper. According to the results, the power flow and phase angle can be controlled successfully by the new device through voltage injection. Finally a THD analysis is performed to see the harmonics content. The effect on the quality of the line voltage and current is acceptable according to international standards.

Development of Converter for High Frequency Welding Machines using Active Snubber (액티브 스너버를 이용한 고주파 용접기 컨버터 개발)

  • Shin, Jun-Young;Lee, Jae-Min;Choi, Seung-Won;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.351-355
    • /
    • 2016
  • Welding machines are high-capacity systems used in a low-frequency range using IGBT. As their system is similar to a large transformer, most welding machines suffer a great loss because of hard switching and vast leakage inductance. A voltage-balancing circuit is designed to overcome these shortcomings. This circuit can reduce the transformer size by making it into a high frequency and reducing the input voltage by half and by adopting a serial structure that connects two full-bridges in a series to use a MOSFET with a good property at high frequency. In addition, a Schottky diode is used in the primary rectifier to overcome the low efficiency of most welding machines. To use the Schottky diode with a reliably relatively low withstanding voltage, an active snubber is adopted to effectively limit the ringing voltage of the diode cut-off voltage.

High-Frequency Flyback Transformer Linked PWM Power Conditioner with An Active Switched Capacitor Snubber

  • Mun, Sang-Pil;Kim, Soo-Wook;Joo, Seok-Min;Park, Young-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.7
    • /
    • pp.7-15
    • /
    • 2008
  • A single active capacitor snubber-assisted soft-switching sinewave pulse modulation utility-interactive power conditioner with a three-winding flyback high frequency transformer link and a bidirectional active power switch in its secondary side has been proposed. With the aid of the switched-capacitor quasi-resonant snubber cell, the high frequency switching devices in the primary side of the proposed DC-to-AC sinewave power inverter can be turned-off with ZVS commutation. In addition to this, the proposed power conditioner in the DCM can effectively take the advantages of ZCS turn-on commutation. Its output port is connected directly to the utility AC power source grid. At the end, the prototype of the proposed HF-UPC is built and tested in experiment. Its power conversion conditioning and processing circuit with a high frequency flyback transformer link is verified and the output sinewave current is qualified in accordance with the power quality guidelines of the utility AC interactive power systems.

PPS Control Method of High Gain Soft-Switching Bidirectional Converter (고승압 소프트스위칭 양방향 컨버터의 PPS 제어기법)

  • Jeong, Hyeonju;Kwon, Minho;Choi, Sewan
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.211-212
    • /
    • 2016
  • 본 논문에서는 비절연 고승압 소프트 스위칭 양방향 DC-DC 컨버터의 PWM Plus Phase Shift(PPS) 제어기법을 제안한다. 제안하는 컨버터는 기존의 하프브리지 양방향 컨버터의 2배의 승 강압비를 가지며 CCM에서 모든 스위치가 소프트스위칭을 성취한다. 또한, PPS 제어기법을 적용하여 스위치의 전압/전류정격을 최소화할 뿐 아니라 매끄러운 모드전환이 가능하다. 제안하는 양방향 컨버터의 3kW 시작품은 5.2배의 승 강압동작에서 최고효율 97.2%, 97.5%를 달성하였다.

  • PDF

Bidirectional DC-DC Converter with Soft-Switching for Battery Charging and Discharging of Electric Vehicle (소프트스위칭 특성을 갖는 전기자동차 배터리 충방전용 양방향 DC-DC 컨버터)

  • Seo, Bo-Gil;Jung, Jae-Hun;Park, Hae-Young;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.143-144
    • /
    • 2013
  • 본 논문에서는 전기자동차 배터리 충방전용 3상 인터리브드 양방향 DC-DC 컨버터의 소프트 스위칭에 대해 다루었다. 양방향 DC-DC 컨버터의 한쪽 단자는 계통과 연결된 PWM 컨버터의 DC-link단과 연결되고, 다른 한쪽 단자는 배터리에 연결된다. 양방향 DC-DC 컨버터의 소프트스위칭에 대해 기술한 다음 인덕터의 권선 저항이 소프트 스위칭 동작에 미치는 영향을 분석하였으며, 시뮬레이션을 통하여 제안한 방식의 타당성을 검증하였다.

  • PDF

Full-Digital Controlled High Power Soft Switching DC/DC Converter for Resistance Welding (저항용접용 풀-디지털제어 대용량 소프트 스위칭 DC/DC 켄버터)

  • 김은수;김태진;변영복;조기연;조상명
    • Proceedings of the KWS Conference
    • /
    • 2000.04a
    • /
    • pp.99-102
    • /
    • 2000
  • Conventionally, ZVS FB DC/DC converter was controlled by monolithic IC UC3879, which includes the functions of oscillator, error amplifier and phase-shift circuit. Also, microprocessor and DSP have been widely used for the remote control and for the immediate waveform control in ZVS FB DC/DC converter. However the conventional microprocessor controller is complex and difficult to control because the controller consists of analog and digital parts. In the case of the control of FB DC/DC converter, the output is required of driving a direct signal to the switch drive circuits by the digital controller. So, this paper presents the method and realization of designing the digital-to-phase shift PWM circuit controlled by DSP (TMX320C32) in a 2,500A, 40㎾ WS FB DC/DC converter.

  • PDF