• Title/Summary/Keyword: Soft soil layer

Search Result 157, Processing Time 0.023 seconds

Bearing Capacity Characteristics of the Light Weight Method Used Recycled EPS Beads (폐 EPS 입자를 활용한 경량성토공법의 지지력 평가)

  • Lee, Jongkyu;Lee, Bongjik;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.21-29
    • /
    • 2006
  • Light weight filling method prevents settlement of ground by decreasing the weight of fills. This method is increasingly used for it's convenience and workability. Styrofoam is increasingly used as a lightweight filling material in soft ground. The beneficial effects of the use of EPS derive from minimizing the stress increment, increasing the bearing capacity and reducing the settlement. For this study, model test and FEM analysis of bearing capacity is carried out composing two-layered ground with clay in the lower layer and lightweight filling material in upper layer. Based on the results obtained here in this study, it is concluded that the use of recycled EPS beads is acceptable lightweight fill. Light weight fills used for disposal is superior to typical embankment fills in bearing capacity.

  • PDF

Polymer Base Bored Pile in Bangkok Subsoils

  • Teparaksa, Wanchai
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.407-426
    • /
    • 2008
  • The bentonite slurry has been used as the stabilize suspension for wet process bored pile construction in Thailand. The bentonite suspension has benefit on filtration in the sand layer, but it creates thick cake film along pile shaft and loose sedimentation at pile toe. The base grouting technique was widely used to rectify the soft base or loose sedimentation problem of bored pile. The base grouting technique was not increased only end bearing capacity, but was also more increase in skin friction capacity of the bored piles. The comprehensive researches on base grouting was carried out by installing PVC casing inside the shaft to allow the drilling through the pile base in order to collect the soil sample below the pile tip. The polymer based slurry recently was used to replace the bentonite slurry to overcome the thick cake film along pile shaft as well as loose sedimentation at pile toe. The extent research on polymer slurry by physical model was performed to verify the real behavior of polymer. The appropriate mixing ratio of polymer was proposed. The design skin friction coefficient, $\beta$ and end bearing coefficient, Nq, for sand layer base on fully instrumented tested pile were proposed. The application on remedial of the lose capacity bored pile with large displacement in Bangladesh was proposed and discussed.

  • PDF

Stress waves transmission from railway track over geogrid reinforced ballast underlain by clay

  • Fattah, Mohammed Y.;Mahmood, Mahmood R.;Aswad, Mohammed F.
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.1-27
    • /
    • 2022
  • Extensive laboratory tests were conducted to investigate the effect of load amplitude, geogrid position, and number of geogrid layers, thickness of ballast layer and clay stiffness on behavior of reinforced ballast layer and induced strains in geogrid. A half full-scale railway was constructed for carrying out the tests, the model consists of two rails 800 mm in length with three wooden sleepers (900 mm × 10 mm × 10 mm). The ballast was overlying 500 mm thickness clay in two states, soft and stiff state. Laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid. Settlement in ballast and clay, soil pressure and pore water pressure induced in the clay were measured in reinforced and unreinforced ballast cases. It was concluded that the effect of frequency on the settlement ratio is almost constant after 500 cycles. This is due to that the total settlement after 500 cycles, almost reached its peak value, which means that the ballast particles become very close to each other, so the frequency is less effective for high contact particles forces. The average maximum vertical stress and pore water pressure increased with frequency.

Development of Neural Network Model for Estimation of Undrained Shear Strength of Korean Soft Soil Based on UU Triaxial Test and Piezocone Test Results (비압밀-비배수(UU) 삼축실험과 피에조콘 실험결과를 이용한 국내 연약지반의 비배수전단강도 추정 인공신경망 모델 개발)

  • Kim Young-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.73-84
    • /
    • 2005
  • A three layered neural network model was developed using back propagation algorithm to estimate the UU undrained shear strength of Korean soft soil based on the database of actual undrained shear strengths and piezocone measurements compiled from 8 sites over the Korea. The developed model was validated by comparing model predictions with measured values about new piezocone data, which were not previously employed during development of model. Performance of the neural network model was also compared with conventional empirical methods. It was found that the number of neuron in hidden layer is different for the different combination of transfer functions of neural network models. However, all piezocone neural network models are successful in inferring a complex relationship between piezocone measurements and the undrained shear strength of Korean soft soils, which give relatively high coefficients of determination ranging from 0.69 to 0.72. Since neural network model has been generalized by self-learning from database of piezocone measurements and undrained shear strength over the various sites, the developed neural network models give more precise and generally reliable undrained shear strengths than empirical approaches which still need site specific calibration.

Structural Design and Construction of the Foundation of TOKYO SKYTREE

  • Konishi, Atsuo;Emura, Masaru
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.249-259
    • /
    • 2015
  • This paper introduces the structural design and construction method for the foundation of the TOKYO SKYTREE, a new digital broadcasting tower in Tokyo, which has a height of 634 meters. The surface layer of the ground is occupied by soft soil, thus the foundation of this tower is an SRC continuous underground wall pile, designed and developed to have horizontal rigidity and pull-out resistance. The structural integrity and construction method of the wall pile was verified with an on-site full scale pull-out test concluding a maximum load of 40,000 kN.

Ground-Tunnel Interaction Effect Depending on the Ground Stiffness (지반의 강성변화에 따른 지반-터널 동적 상호작용 연구)

  • 김대상
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.339-343
    • /
    • 2001
  • Shield tunnel having circular section located in the soil or soft rock layer is liable to deform in such a way that its two diagonal diameters crossing each other expand and contract alternately during earthquakes. Based on this knowledge, the ground-tunnel interaction effect for this particular vibration mode is investigated. The ground surrounding a tunnel is assumed to be a homogeneous elastic medium. The bonded boundary condition on the ground-tunnel interface is considered. This suggests a firm bond between the ground and the tunnel lining. As Poisson's ratio and stiffness of the ground increases, the strain induced within the tunnel lining increases.

  • PDF

Experimental Studies on the Compressive Strength of the Frozen Soils (동결토의 압축강도에 관한 실험적 연구)

  • 유능환;최중돈;유영선;조영택
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.55-66
    • /
    • 1993
  • Upon freezing a soil swells due to phase change and its compression stress increase a lot. As the soil undergo thawing, however, it becomes a soft soil layer because the 'soil changes from a solid state to a plastic state. These changes are largely dependent on freezing temperature and repeated freezing-thawing cycle as well as the density of the soil and applied loading condition. This study was initiated to describe the effect of the freezing temperature and repeated freezing-thawing cycle on the unconfined compressive strength. Soil samples were collected at about 20 sites where soil structures were installed in Kangwon provincial area and necessary laboratory tests were conducted. The results could be used to help manage effectively the field structures and can be used as a basic data for designing and constructing new projects in the future. The results were as follows ; 1. Unconfined compressive strength decreased as the number of freezing and thawing cycle went up. But the strength increased as compression speed, water content and temperature decreased. The largest effect on the strength was observed at the first freezing and thawing cycle. 2. Compression strain went up with the increase of deformation speed, and was largely influenced by the number of the freezing-thawing cycle. 3. Secant modulus was responded sensitivefy to the material of the loading plates, increased with decrease of temperature down to - -10$^{\circ}$C, but was nearly constant below the temperature. Thixotropic ratio characteristic became large as compression strain got smaller and was significantly larger in the controlled soil than in the soil treated with freezing and thawing processes 4. Vertical compression strength of ice crystal(development direction) was 3 to 4 times larger than that of perpendicular to the crystal. The vertical compression strength was agreed well with Clausius-Clapeyrons equation when temperature were between 0 to 5C$^{\circ}$, but the strength below - 5$^{\circ}$C were different from the equation and showed a strong dependency on temperature and deformation speed. When the skew was less then 20 degrees, the vertical compression strength was gradually decreased but when the skew was higher than that, the strength became nearly constant. Almost all samples showed ductile failure. As considered above, strength reduction of the soil due to cyclic freezing-thawing prosses must be considered when trenching and cutting the soil to construct soil structures if the soil is likely subject to the processes. Especially, if a soil no freezing-thawing history, cares for the strength reduction must be given before any design or construction works begin. It is suggested that special design and construction techniques for the strength reduction be developed.

  • PDF

Characterization and Classification of Potential Acid Sulfate Soils on Flood-plains (하해혼성(河海混成) 잠재특이산성토양(潛在特異酸性土壤)의 분포(分布)와 분류(分類))

  • Jung, Yeun-Tae;No, Yeong-Pal;Baeg, Cheong-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.173-179
    • /
    • 1989
  • Characterization and classification of the potential acid sulfate soils found on flood-plains in Yeongnam area were summarized as follows: 1. The "Potential acid sulfate soil" layer(s) were appeared in the around 2-4m substrata of soil profiles and characterized by the fine texture, high reduction and physical unripened soft mud deposits or having higher contents of organic matter with dark color. 2. The contents of total sulfur (T-S) in those soils were ranged around 0.45-0.9% and the materials exhibited a strong acidity upon the oxidation with $H_2O_2$. Although the T-S contents was low as much as 0.15%, the sulfidic materials were also acidified strongly by the oxidation with $H_2O_2$ in the condition of lower content of carbonates. As defined in Soil Taxonomy of USDA, most of the sulfidic materials contained less than 3 times carbonate ($CaCO_3$ equivalent wt. %), but there were some which abundant in shell fragments, contained more than 3 times carbonate by weight percentage and that not much acidified by the oxidation with $H_2O_2$. 3. The contents of T-S correlated negatively with the pH oxidized by $H_2O_2$ and with the fizzing time (minutes) due to addition of $H_2O_2$. 4. The potential acid sulfate soils could be defined as soil materials that had sulfidic layer(s) more than 20cm thick within 4m of the soil profile and contained more than 0.15% of T-S with less than 3 times carbonate ($CaCO_3$ equiv. %). A tentative interpretative soil classification system was proposed, i.e., "Weak potential acid sulfate (T-S, 0.15-0.5%)", "Moderate potential acid sulfate (T-S, 0.5-0.75%)", and "Strong potential acid sulfate (T-S, more than 0.75%)". Finally, it was proposed that the "Detailed soil survey with high intensity" should be carried out in the areas of agricultural engineering works such as arableland readjustment works, in advance.

  • PDF

A Study on the Distribution and Property of Carbonaceous Materials in the Subsurface Sediments near the Imjin River (임진강변 퇴적층 내 탄소물질들의 분포 및 특성 연구)

  • Jeong, Sang-Jo
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.3
    • /
    • pp.34-43
    • /
    • 2010
  • The fate of hydrophobic organic contaminants (HOCs) in ground water is highly affected by the distribution and property of the carbonaceous materials (CMs) in subsurface sediments. CMs in soils consist of organic matters (e.g., cellulose, fulvic acid, humic acid, humin, etc.) and black carbon such as char, soot, etc. The distribution and property of CMs are governed by source materials and geological evolution (e.g., diagenesis, catagenesis, etc.) of them. In this study, the distribution and property of CMs in subsurface sediments near the Imjin river in the Republic of Korea and HOC sorption property to the subsurface sediments were investigated. The organic carbon contents of sand and clay/silt layers were about 0.35% and 1.37%, respectively. The carbon contents of condensed form of CMs were about 0.13% and 0.45%, respectively. The existence of black carbon was observed using scanning electron microscopes with energy dispersive spectroscopy. The specific surface areas (SSA) of CMs in heavy fraction(HFrCM) measured with N2 were $35-46m^2/g$. However, SSAs of those HFrCM mineral fraction was only $1.6-4.3m^2/g$. The results of thermogravimetric analysis show that the mass loss of HFrCM was significant at $50-200^{\circ}C$ and $350-600^{\circ}C$ due to the degradation of soft form and condensed form of CMs, respectively. The trichloroethylene (TCE) sorption capacities of sand and clay/silt layers were similar to each other, and these values were also similar to oxidzed layer of glacially deposited subsurface sediments of the Chanute Air Force Base (AFB) in Rantoul, Illinois. However, these were 7-8 times lower than TCE sorption capacity of reduced layer of the Chanute AFB sediments. For accurate prediction of the fate of hydrophobic organic contaminants in subsurface sediments, continuous studies on the development of characterization methods for CMs are required.

Material and Behavior Characteristics of Lightweight Embankment for Road Constructed on Soft Ground (연약지반에 시공된 도로용 경량성토체의 재료 및 거동특성)

  • Yea, Geu-Guwen;Lee, Yong-Jae;Kim, Hong-Yeon;Yoon, Gil-Lim;Han, Sang-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.2
    • /
    • pp.41-49
    • /
    • 2018
  • The purpose of this study is to fabricate a full scale road embankment using lightweight air foamed soil as a soil material on soft ground and to investigate its material characteristics and behavior in order to promote dredged soil utilization and minimize ground improvement. As a result of the laboratory test of the onsite mixed samples, the total unit weight of the specimens decreased almost linearly until curing 28 days. In particular, the total unit weight after 28 days of curing was reduced to about 81% of the slurry state before curing, which will be useful in the formulation of similar native soil materials in the future. The unconfined compressive strength began to decrease with the 14th day of curing as shown in the previous study. When the cement content is increased, the strength decreases sharply at a small strain change after the occurrence of the maximum compressive strength, and the maximum strength is exhibited in a range of a smaller axial strain than normal range. The settlement at the surface layer of the ground due to the lightweight embankment was about 1 / 2.75 of the soil embankment and was in agreement with the unit weight ratio (1 / 2.7) of the embankment materials. This indicates the cause and effect of the settlement due to the difference in self weight of the embankments. Also, the difference in settlement between soil and lightweight embankment increased with increasing depth. This shows that the difference in the point at which the settlement is terminated is clear. The ground horizontal displacement under the lightweight embankment was about 15~20% smaller than that of the soil embankment and the depth of occurrence was also 4.5~5.0m shallower in the lightweight embankment.