• Title/Summary/Keyword: Soft output Viterbi algorithm

Search Result 26, Processing Time 0.023 seconds

A Modified Soft Output Viterbi Algorithm for Quantized Channel Outputs

  • Lee Ho Kyoung;Lee Kyoung Ho
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.663-666
    • /
    • 2004
  • In this paper, a modified-SOYA (soft output viterbi algorithm) of turbo codes is proposed for quantized channel receiver filter outputs. We derive optimum branch values for the Viterbi algorithm. Here we assume that received filter outputs are quantized and the channel is additive white Gaussian noise. The optimum non-uniform quantizer is used to quantize channel receiver filter outputs. To compare the BER (bit error rate) performance we perform simulations for the modified SOYA algorithm and the general SOYA

  • PDF

New soft-output MLSE equalization algorithm for GSM digital cellular systems

  • 한상성;노종선;정윤철;김관옥;신윤복;함승재;이상봉
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.747-752
    • /
    • 1996
  • In this paper, we propose a new SO-MLSE(soft-output maximum likelihood sequence estimation) equalizer, which can be used in GSM digital cellular system) it uses complex correlation of training sequence to obtain the channel information and the equalization is performed by MLSE using Viterbi algorithm. In order to generate a soft-decision input to channel decoder (Viterbi decoder), the soft-output equalization algorithm is needed. The adopted algorithm doesn't require to modify the structure of HO-MLSE(hard output MLSE) equalizer, that is, SO-MLSE equalizer can be implemented by adding soft-output generation block to HO-MLSE equalizer. This algorithm uses the outputs of matched filter and HO-MLSE equalizer. It turns out that the complexity of proposed SO-MLSE equalizer is simpler than those of other SO-MLSE equalizer and its perforance is almost the same as those of others. Finally, the proposed SO-MLSE equalizer is also implemented s a prototype with ADSP-2101 16-bits fixed point digital signal processing chip.

  • PDF

Design and implementation of a viterbi decoder for a soft output equalizer in the DSC 1800 radio system (DCS 1800 시스템에서 연판정 출력 등화기에 대한 비터비 복호기 설계 및 구현)

  • 김주응;윤석현;이재혁;강창언
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.19-28
    • /
    • 1998
  • This paper is concerned with the implementation of the equalization technique in a DCS 1800 system employing the soft-decision output Viterbi algorithm (SOVA), which makes the hardware complexity comparable to the hard decision MLSE and gives reliable performance. Also, the channel estimation technique with enhances the perfdormance of the soft-decision output equalizer is proposed, and the Viterbi decoder which operates effectively with the soft-decision output of the qualizer is implemented using the Very High Speed ICs Hardware Description Language (VHDL). From the simulation results, it is shown that the implemented Viterbi decoder operates effectively and the SOVA outperforms the hard-decision MLSE in terms of the frame erasure rate (FER) and bit error rate (BER).

  • PDF

Performance Improvement Using Iterative Two-Dimensional Soft Output Viterbi Algorithm Associated with Noise Filter for Holographic Data Storage Systems

  • Nguyen, Dinh-Chi;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.3
    • /
    • pp.121-126
    • /
    • 2014
  • Demand of the data storage becomes more and more growing. This requests the next generation of storage devices to have the dominated storage capability associated with superfast read/write rate. Holographic data storage (HDS) is investigated for a long time and is considered to be a candidate for the future storage system. However, it has two-dimensional intersymbol interference that conventional one-dimensional detection solutions have not yet handled strictly because of the complexity level of system as well as the cost. We propose a new scheme that combines iterative soft output Viterbi algorithm with noise filter for improving the bit error rate performance of HDS.

Performance of Read Head Offset on Patterned Media Recording Channel (패턴드 미디어 채널에서 트랙 위치 오프셋에 따른 성능)

  • Kim, Jin-Young;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11C
    • /
    • pp.896-900
    • /
    • 2010
  • We investigate the bit error rate against signal-to-noise ratio performance corresponding to track mis-registration for patterned media storage. The patterned media channels with and without soft underlayer are implemented, and we simulate using one-dimensional Viterbi detector and two-dimensional soft output Viterbi detector (SOVA) when the track mis-registration is 0% (on-track), 10%, 20%, 30%, and 40%. While the BER performance degrades approximate 0.3 ~ 0.5 dB at 10% track mis-registration, it degrades severe over 10% track mis-registration.

Performance of Two-Dimensional Soft Output Viterbi Algorithm for Holographic Data Storage (홀로그래픽 저장장치를 위한 2차원 SOVA 성능 비교)

  • Kim, Jinyoung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.815-820
    • /
    • 2012
  • We introduce two-dimensional soft output Viterbi algorithm (2D SOVA) and iterative 2D SOVA for holographic data storage. Since the holographic data storage is 2D intersymbol interference (ISI) channel, the 2D detection schemes have good performance at holographic data storage. The 2D SOVA and iterative 2D SOVA are 2D detection schemes. We introduce and compare the two 2D detection schemes. The 2D SOVA is approximately 2 dB better than one-dimensional (1D) detection scheme, and iterative 2D SOVA is approximately 1 dB better than the 2D SOVA. In contrast, the iterative 2D SOVA is approximately twice complex higher than 2D SOVA, and 2D SOVA is approximately twice complex higher than 1D detection scheme.

Performance Analysis of SOVA by Robust Equalization, Techniques in Nongaussian Noise Channel (비가우시안 잡음 채널에서 Robust 등화기법을 이용한 터보 부호의 SOVA 성능분석)

  • Soh, Surng-Ryurl;Lee, Chang-Bum;Kim, Yung-Kwon;Chung, Boo-Young
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.257-265
    • /
    • 2000
  • Turbo Code decoder is an iterate decoding technology, which extracts extrinsic information from the bit to be decoded by calculating both forward and backward metrics in each decoding step, and uses the information to the next decoding step. Viterbi decoder, which is for a convolutional code, runs continuous mode, while Turbo Code decoder runs by block unit. There are algorithms used in a decoder : which are MAP(maximum a posteriori) algorithm requiring very complicated calculation and SOVA(soft output Viterbi algorithm) using Viterbi algorithm suggested by Hagenauer, and it is known that the decoding performance of MAP is better. The result of this make experimentation shows that the performance of SOVA, which has half complex algorithm compare to MAP, is almost same as the performance of MAP when the SOVA decoding performance is supplemented with Robust equalization techniques.

  • PDF

A Two-Step Soft Output Viterbi Algorithm with Algebraic Structure (대수적 구조를 가진 2단 연판정 출력 비터비 알고리듬)

  • 김우태;배상재;주언경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.1983-1989
    • /
    • 2001
  • A new two-step soft output Viterbi algorithm (SOVA) for turbo decoder is proposed and analyzed in 7his paper. Due to the algebraic structure of the proposed algorithm, slate and branch metrics can be obtained wish parallel processing using matrix arithmetic. As a result, the number of multiplications to calculate state metrics of each stage and total memory size can be decreased tremendously. Therefore, it can be expected that the proposed algebraic two-step SOVA is suitable for applications in which low computational complexity and memory size are essential.

  • PDF

VLSI Design of SOVA Decoder for Turbo Decoder (터보복호기를 위한 SOVA 복호기의 설계)

  • Kim, Ki-Bo;Kim, Jong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3157-3159
    • /
    • 2000
  • Soft Output Viterbi Algorithm is modification of Viterbi algorithm to deliver not only the decoded codewords but also a posteriori probability for each bit. This paper presents SOVA decoder which can be used for component decoder of turbo decoder. We used two-step SMU architectures combined with systolic array traceback methods to reduce the complexity of the design. We followed the specification of CDMA2000 system for SOVA decoder design.

  • PDF

Iterative Decoding Algorithm for VLC Systems (가시광 통신 시스템을 위한 반복 복호 알고리즘)

  • Koo, Sung-Wan;Kim, Jin-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2766-2770
    • /
    • 2009
  • Recently, the Green IT is noticed because of the effects of greenhouse gas emissions, a drain on natural resources and pollution. In this paper, Visible Light Communication (VLC) systems with Turbo Coded scheme using LED is proposed and simulated in an optical wireless channel. As a forward error correction scheme to reduce information losses, turbo coding was employed. To decode the codewords, The Map (Maximum a Posteriori) algorism and SOVA (Soft Output Viterbi Algorithm) is used. The above mentioned schemes are described and simulation results are analyzed. As using turbo codes scheme, BER performance of proposed VLC systems is improved about 5 [dB].