• Title/Summary/Keyword: Soft mold

Search Result 92, Processing Time 0.028 seconds

Fabrication of PDMS Lens Using Photolithography and Water Droplet Mold (사진식각공정과 물방울 형틀을 이용한 PDMS 렌즈 제작)

  • Kim, Jin Young;Sung, Jungwoo;Cho, Seong J.;Kim, Chulhong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.352-356
    • /
    • 2013
  • We developed a novel fabrication method of polydimethylsioxane (PDMS) lens, which can easily control the shapes of the lens using soft lithography with common photolithography and water droplet molding. A mold for PDMS lens was prepared by patterning of hydrophobic photoresist on the hydrophilic substrate and dispensing small water droplets onto the predefined hydrophilic patterns. The size of patterns determined the dimension of the lens and the dispensed volume of the water droplet decided the radius of curvature of the PDMS lens independently. The water droplet with photoresist pattern played a robustly fixed mold for lens due to difference in wettability. The radius of curvature could be calculated theoretically because the water droplets could approximate spherical cap on the substrate. Finally, concave and convex PDMS lenses which could reduce or magnify optically were fabricated by curing of PDMS on the prepared mold. The measured radii of the fabricated PDMS lenses were well matched with the estimated values. We believe that our simple and efficient fabrication method can be adopted to PDMS microlens and extended to micro optical device, lab on a chip, and sensor technology.

A Study on Characteristics Improvement of Epoxy Resin Mold Using Metal Fillers and Its Application (금속 보강재를 이용한 에폭시 수지형의 특성 향상 및 적용에 관한 연구)

  • ;;;;Nakagawa Takeo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.165-173
    • /
    • 2003
  • As the cycling time of new products have become more and more short in recent years, the demand for lowering the cost and reducing the production time becomes stronger. In order for the demand, the rapid prototyping and rapid tooling technology have been used. It has been widely known that RP technology has advantages with fabricating 3-D object having a complicated geometric shape. RP products, however, have a limitation with applying to the real die and mold because soft materials such as resin, paper and wax has been mostly used in RP technology. So in this paper, the RP products have been copied to semi-metallic soft tools using the mixture of metal fillers and epoxy resin. In order to evaluate the effect of the fillers on the characteristics of semi-metallic soft tools, three fillers are used including commercial aluminum powder, cast iron powder recycled by machining chips, and aluminum short fiber made by self-excited vibration technique. Besides, in the case of aluminum powder, the change of characteristics of semi-metallic soft tools is also tested according to the volume fraction of the powder.

Control of free surface shape in the electromagnetic casting process (전자기 주조공정에서의 자유표면 형상 제어)

  • 박재일;강인석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.612-615
    • /
    • 1996
  • In the continuous casting process, molten metal contacts the mold wall and the molten metal surface is subject to the mold oscillation. The mold oscillation results in the oscillation marks on the surface of solidified steel, which has undesirable effects on the quality of slabs. In order to reduce the oscillation marks by achieving soft contact of molten metal with the mold surface, alternating magnetic field is applied to the surface of molten metal. However, if the magnetic field strength becomes too strong, the melt flow induced by the magnetic field. causes the instability of the molten metal surface, which has also the bad influence on the slab quality. Therefore, it is very important to choose the optimal position of the inductor coil and the optimal level of electric power to minimize the surface defects. In the present work, as a first step toward the optimization problem of the process, numerical studies are performed to investigate the effects of coil position and the electric power level on the meniscus shape and the flow field. As numerical tools, the boundary integral equation method(BIEM) is used for the magnetic field analysis and the finite difference method (FDM) with orthogonal grid generation is used for the flow analysis.

  • PDF

A technical study on mold of productivity improvement for Insert Injection of Reverse Engineering (리버스 엔지니어링을 통한 인서트 사출의 생산성향상을 위한 금형기술연구)

  • Lee, S.Y.;Kim, Y.G.;Woo, C.K.;Kim, O.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.535-538
    • /
    • 2008
  • Insert-injection molding can inject two different materials or two colors in the same mold and process. If this injection process use, product has ability because the base part maintain strength and specified part can inject soft-material. It makes the cost down by single operation automatically for saving wages. In this paper, we designed double-injection mold for automobile remote control to inject secondary using this part as insert after inject external appearance of product. CAE analysis was progressed gate location and runner size as variable and analysis result is reflected in mold design process. As a result, it could solved badness that is generated at the conventional mold. Additionally, cost is downed by reducing loss of runner as well as could omit painting process because surface of finished product is improved through new mold.

  • PDF

Rapid Tooling of Aluminum Shoes Mold Using Porous Mold (통기성 세라믹형을 이용한 알루미늄 신발금형의 쾌속제작)

  • Chung, Sung-Il;Jeong, Du-Su;Kim, Do-Kyung;Jeong, Hae-Do;Cho, Ku-Kap
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.62-67
    • /
    • 1999
  • The RP&M(Rapid Prototyping and Manufacturing) is the most appropriate technology for the small-lot production system, in which the production cycle is getting shorter owing to various needs from consumers. Recently RP products which are made of plastics, wax, and paper are used to verify the design of samples. But these products cannot be applied to the real mold because the strength enough to be a mold cannot be given by soft materials such as plastics. So RP products are copied to AFR(Al powder Filled Resin) molds or metal molds, which is called the RP&M. In this paper, RP&M is applied to a casting process. A porous casting mold, which is made from ceramic powder and binder, is used for rapid tooling of aluminum shoes molds.

  • PDF

A technical study on mold construction development for junction improvement and productivity improvement of Double-Injection molding (이중사출의 접합성 개선 및 생산성향상을 위한 금형구조 개발기술연구)

  • Kim, O.R.;Lee, S.Y.;Kim, Y.K.;Woo, C.K.;Han, I.Y.
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.49-55
    • /
    • 2008
  • Double-injection molding can inject two different materials or two colors in the same mold and process. If this injection process use, product has ability because the base part maintain strength and specified part can inject soft-material. It makes the cost down by single operation automatically for saving wages. In this paper, we designed double-injection mold for automobile remote control to inject secondary using this part as insert after inject external appearance of product. CAE analysis was progressed gate location and runner size as variable and analysis result is reflected in mold design process. As a result, it could solved badness that is generated at the conventional mold. Additionally, cost is downed by reducing loss of runner as well as could omit painting process because surface of finished product is improved through new mold.

  • PDF

Rapid Tooling for Resin Transfer Molding of Composites Part (복합재료 부품의 RTM 공정을 위한 쾌속금형의 제작)

  • Kim, S.K.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.436-440
    • /
    • 2006
  • A rapid tooling (RT) method fur the resin transfer molding (RTM) have been investigated. We fabricated a curved I-beam to verify the method. After creating a three-dimensional CAD model of the beam we fabricated a prototype of the model using a rapid prototyping (RP) machine. A soft mold was made using the prototype by the conventional silicone mold technique. The procedure and method of mold fabrication is described. The mold was cut into several parts to allow easier placement of the fiber preform. We conducted the resin transfer molding process and manufactured a composite beam with the mold. The preform was built by stacking up eight layers of delicately cut carbon fabrics. The fabrics were properly stitched to maintain the shape while placement. The manufactured composites beam was inspected and found well-impregnated. The fiber volume ratio of the fabricated beam was 16.85%.

Effect of aging on tear strength and cytotoxicity of soft denture lining materials; in vitro

  • Landayan, Jordi Izzard Andaya;Manaloto, Adrian Carlos Francisco;Lee, Jeong-Yol;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • PURPOSE. The aim of this in vitro study was to evaluate the effect of aging on the tear strength and cytotoxicity of four soft denture lining materials. MATERIALS AND METHODS. Four commonly used soft denture lining materials, (Coe-Comfort$^{TM}$ GC America Inc., Alsip, IL, USA; Coe-SOFT$^{TM}$ GC America Inc., Alsip, IL, USA; Visco-gel Dentsply Caulk Milford, DE, USA; and Sofreliner Tough M Tokuyama Dental Corporation Tokyo, Japan) were selected. Sixty trouser-leg designed specimens per lining material were fabricated using a stainless steel mold for tear strength testing. The specimens were divided into non-thermocycling and 1000-, and 3000-thermocycling groups. For the cytotoxicity test, twenty-four disk shaped specimens per material were fabricated using a stainless steel mold. The specimens were soaked in normal saline solution for 24 h, 48 h and 72 h. Cytotoxicity was measured by XTT assay in L929 mouse fibroblasts. Data were analyzed by two way analysis of variance and Dunnett's test (P<.05). RESULTS. Before thermocycling, Sofreliner Tough M ($10.36{\pm}1.00N$) had the highest tear strength value while Coe-Comfort$^{TM}$ ($0.46{\pm}0.10N$) had the lowest. After 3000 cycles, Sofreliner Tough M ($9.65{\pm}1.66N$) presented the highest value and Coe-Comfort$^{TM}$ ($0.42{\pm}0.08N$) the lowest. Sofreliner Tough M, in all incubation periods was the least toxic with significant differences compared to all other materials (P<.05). Coe-Comfort$^{TM}$, Coe-$SOFT^{TM}$, and Sofreliner Tough M did not show any significant differences within their material group for all incubation periods. CONCLUSION. This in vitro study revealed that aging can affect both the tear strength and cytotoxicity of soft denture materials depending on the composition.

Comparisons of Thermal-moisture Properties in Combination of 3D spacer and Polyurethane(PU) Foam for Mold Brassiere Cups (몰드 브래지어 컵의 제작을 위한 3D 스페이서 패브릭과 폴리우레탄(PU) 폼 조합에 따른 열·수분 전달 특성 비교)

  • Lee, Hyun Young;Park, Huiju
    • Korean Journal of Human Ecology
    • /
    • v.24 no.2
    • /
    • pp.285-295
    • /
    • 2015
  • To identify optimized thermal properties of mold brassiere cup for improved thermal comfort during summer, we compared the thermal resistance and the water vapor permeability of Polyurethane (PU) foam, 3D spacer fabric and the two combined materials of the PU foam and the 3D spacer fabric. Four experimental mold brassieres were made of the materials for wearing test. Six women in their twenties evaluated the wearing sensation in the hot and humid environment. The changes in microclimate temperature and humidity while wearing test brassiere cups were measured. Results indicate that thermal resistance increased as more PU foam were combined, while the water vapor permeability was higher as the content of the 3D spacer fabric increased at thickness of 18mm and over. However, in the wear test, the PU foam brassiere was the most preferred in all ambient conditions due to its soft, flexible and smooth texture, despite its high thermal resistance and low water vapor permeability. This indicates that the textures of mold foams are more dominant properties than thermal properties for mold foams in determining the wear comfort of mold brassieres.

A study on the factors influencing at corner area material thickness changes of rectangular drawing products (각통드로잉 제품의 모서리 재료두께 변화에 영향을 미치는 인자에 대한 해석 연구)

  • Yun, Jae-Woong;Cho, Sang-Hee;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.22-29
    • /
    • 2020
  • The analysis was carried out using the press molding analysis program by applying six parameters such as material type change, material thickness, friction coefficient, rp, rd and blank holder pressure. As a result of CAE analysis of the soft material DC04 and the relatively hard material HX300LAD, the thickness of the punch R part of the soft material was significantly reduced. The flange portion is greatly increased in thickness in the hard material by the compression action. As a result of considering the deformation amount of 0.6mm, 1.0mm, 1.5mm according to the material thickness, the influence of the thickness is considered to be very small. In case of the material thickness of 0.6mm, the rate of change increases due to the deep drawing depth relative to the material thickness. The sizes of the punches R and die R have the greatest influence on the change in thickness of the material in drawing molding, the smaller the punch R, the thinner the edges of the product, The larger the R of the die, the greater the material thickness of the flange portion. As the coefficient of friction and the blank holder pressure increase, the frictional force of the flange portion increases, which increases the radial force in the drawing process and increases the thickness change of the flange portion.