• Title/Summary/Keyword: Soft magnetics

Search Result 290, Processing Time 0.025 seconds

Permeability Aftereffect in FeCuNbSiB Alloy (FeCuNbSiB 합금의 투자율 여효)

  • Lee, Yong-Ho;Sin, Yong-Dol;No, Tae-Hwan;Gang, Il-Gu
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.216-221
    • /
    • 1992
  • Annealing effects on the permeability aftereffect(disaccommodation) of liquid quenched single strip $Fe_{73.5}Cu_1Nb_3Si_{16}B_{6.5}$ alloys were investigated with pulse method. The initial susceptibility X, $B_{10},$ (the flux density at 10 Oe) and disaccommodation intensity D (D = [X(1 s)-X(64 s)]/X(1 s), where X(1 s) and X(64 s) are the susceptibility of 1 and 64 s of rest time after A. C. demagnetization) were about 800, 0.8 T and 16 %, respectively. The soft magnetic properties were improved with isothermal annealing for 1 hour at $300{\sim}600^{\circ}C.$ X, $B_{10},$ and D at $570^{\circ}C$ of optimum annealing temperature were 15000, 1.2 T and 1.1 %, respectively. The origin of the change of characteristics were examined with fine crystalline structure and magnetostriction.

  • PDF

Magnetic Sensor-Based Detection of Picoliter Volumes of Magnetic Nanoparticle Droplets in a Microfluidic Chip

  • Jeong, Ilgyo;Eu, Young-Jae;Kim, Kun Woo;Hu, XingHao;Sinha, Brajalal;Kim, CheolGi
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.302-307
    • /
    • 2012
  • We have designed, fabricated and tested an integrated microfluidic chip with a Planar Hall Effect (PHE) sensor. The sensor was constructed by sequentially sputtering Ta/NiFe/Cu/NiFe/IrMn/Ta onto glass. The microfluidic channel was fabricated with poly(dimethylsiloxane) (PDMS) using soft lithography. Magnetic nanoparticles suspended in hexadecane were used as ferrofluid, of which the saturation magnetisation was 3.4 emu/cc. Droplets of ferrofluid were generated in a T-junction of a microfluidic channel after hydrophilic modification of the PDMS. The size and interval of the droplets were regulated by pressure on the ferrofluid channel inlet. The PHE sensor detected the flowing droplets of ferrofluid, as expected from simulation results. The shape of the signal was dependent on both the distance of the magnetic droplet from the sensor and the droplet length. The sensor was able to detect a magnetic moment of $2{\times}10^{-10}$ emu at a distance of 10 ${\mu}m$. This study provides an enhanced understanding of the magnetic parameters of ferrofluid in a microfluidic channel using a PHE sensor and will be used for a sample inlet module inside of integrated magnetic lab-on-a-chip systems for the analysis of biomolecules.

Variation of Magnetic Properties of Fe/CoNbZr with Multilayer Structure and Annealing Condition (Fe/CoNbZr 다층박막의 구조 및 열처리 조건에 따른 자기적 특성)

  • 이성래;김은학;김영근
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.2
    • /
    • pp.45-49
    • /
    • 2001
  • Effects of multilayer structure and annealing condition on the soft magnetic properties of sputtered Fe/CoNbZr multilayers were investigated. We observed a minimum coercivity (1.1 Oe) at 5 nm thick Fe layer and the maximum permeability (2300) at 15 nm Fe layer and high saturation magnetization in the as-deposited state. As a result of increase of Fe grain size, coercivity increases with increasing Fe layer thickness. Degradation of ${\mu}$ at the thin Fe layer region may be due to the intermixed phase of high magnetostriction, such as CoFe. Optimum annealing condition was obtained through annealing at 300 $^{\circ}C$ for 40 min (${\mu}$=2500, H$\sub$c/=0.35 Oe). Enhancement of permeability was observed in the temperature range of 250∼300$^{\circ}C$. These results may closely be related with lowering the anisotropy energy by lattice deformation (0.4%) and enhanced uniaxial anisotropy.

  • PDF

Effect of the Growing Temperature on the Induced Anisotropy of Mumetal Thin Film (Mumetal 박막의 성장온도가 유도자기이방성에 미치는 영향)

  • Lee, Young-Woo;Kim, Cheol-Gi;Kim, Chong-Oh
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.46-50
    • /
    • 2002
  • Soft magnetic Mumetal thin film was fabricated under magnetic field at various substrate temperatures. High vacuum annealing was carried out at 200$\^{C}$ during 1 hr. The in-plane anisotropy of Mumetal thin film was determined from hysteresis loops measured by VSM when the sample axis varied from the field direction from 0°to 180°. As the substrate temperature increases, the coercivity in easy direction decreases, but uniaxial anisotropy deviates from the field direction. After vacuum annealing at 200$\^{C}$ for 1 hr, the uniaxial anisotropy is improved irrespective of substrate temperature. When the substrate temperature was 50$\^{C}$, the anisotropy field is 4.3 Oe. As the substrate temperature increases anisotropy field decreases. Uniaxial anisotropy of Mumetal thin film was formed best at 50$\^{C}$ before and after annealing.

Effect of Sintering Temperature on the Micro Strain and Magnetic Properties of Ni-Zn Nanoferrites

  • Venkatesh, D.;Siva Ram Prasad, M.;Rajesh Babu, B.;Ramesh, K.V.;Trinath, K.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.229-240
    • /
    • 2015
  • In this study, nanocrystalline ferrite powders with the composition $Ni_{0.5}Zn_{0.5}Fe_2O_4$ were prepared by the autocombustion method. The obtained powders were sintered at $800^{\circ}C$, $900^{\circ}C$ and $1,000^{\circ}C$ for 4 h in air atmosphere. The as-prepared and the sintered powders were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and magnetization studies. An increase in the crystallite size and a slight decrease in the lattice constant with sintering temperature were observed, whereas microstrain was observed to be negative for all the samples. Two significant absorption bands in the wave number range of the $400cm^{-1}$ to $600cm^{-1}$ have been observed in the FT-IR spectra for all samples which is the distinctive feature of the spinel ferrites. The force constants were found to vary with sintering temperature, suggesting a cation redistribution and modification in the unit cell of the spinel. The M-H loops indicate smaller coercivity, which is the typical nature of the soft ferrites. The observed variation in the saturation magnetization and coercivity with sintering temperature has been attributed to the role of surface, inhomogeneous cation distribution, and increase in the crystallite size.

Effects of Annealing on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets (FeSiCr 박편/폴리머 복합 시트의 전자파 흡수 특성에 미치는 합금 어닐링 효과)

  • Kim, Ju-Beom;Noh, Tae-Hwan
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.83-88
    • /
    • 2013
  • The soft magnetic Fe-Si-Cr flakes with the thickness of about 1 ${\mu}m$ were annealed at 500 and $700^{\circ}C$ for 1 h, and the composite sheets for electromagnetic wave noise absorber available for quasi-microwave band were fabricated by using these annealed flakes and polymer. Further the power loss characteristics of the composite sheets was investigated to clarify the annealing effect on electromagnetic wave absorption properties. The power loss decreased in the frequency range of several GHz when the annealed flakes were used as compared to the sheet using the as-milled FeSiCr alloy flakes. Moreover the sheets using annealed flakes exhibited lower value of real and imaginary part of complex permeability. These inferior electromagnetic wave absorption properties of the composite sheets using annealed alloy flakes were considered to be obtained by the enhanced eddy current effect upon annealing-induced recovery of microstructure and resulted low complex permeability.

Magnetic Properties of Fe-Zr-N Soft Magnetic Thin Films (Fe-Zr-N 연자성 박막의 자기적 성질)

  • 김택수;김종오;이중환;윤선진;김좌연
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.5
    • /
    • pp.317-322
    • /
    • 1996
  • Thin films of Fe-Zr-N were fabricated by rf magnetron reactive sputtering method. The saturation magnetization and coercivity as functions of annealing temperature and partial pressure of nitrogen gas, effective permeability at high frequencies, and thermal stability were investigated. Magnetic softness was exhibited in the composition range of $Fe_{72-78}Zr_{7-10}N_{15-18}$ which was boundary between polycrystalline and amorphous structure. These films exhibited magnetic softness with saturation magentic flux density of 1.55 T and effective permeability of about 3000 at 1 MHz. These films also exhibited thermal stability by sustaining effective permeability of 2500 or above as the temperature was raised to $550^{\circ}C$. It is asswned that good magnetic softness is obtained because grain growth of $\alpha-Fe$ is prohibited due to the precipitation of ZrN nanocrystals. The grain sizes of $\alpha-Fe$ films were $40~50\AA$ and the grain sizes of ZrN nanocrystals were $10~15\AA$.

  • PDF

Electromagnetic wave Shielding Materials for the Wireless Power Transfer Module in Mobile Handset (휴대단말기 무선전력 전송모듈용 전자기파 차폐소재)

  • Bae, Seok;Choi, Don-Chul;Hyun, Soon-Young;Lee, Sang Won
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.68-76
    • /
    • 2013
  • Currently, wireless power transmission technology based on magnetic induction was employed in battery charger for smart phone application. The system consists of wireless power transmitter in base station and receiver in smart phone. Size and thickness of receiver was strictly limited in the newest smart phone. In order to achieve high efficiency of a tiny small wireless power receiver module, sub-millimeter thick electromagnetic wave shielding sheet having high permeability and Q was essential component. It was found that magnetic field from transmitter to receiver can be intensified by sufficient shielding cause to minimize leakage magnetic flux by those magnetic properties. This leads to high efficiency of wireless power transmission and protects crucial integrated circuit of main board from electromagnetic noise. The important soft magnetic materials were introduced and summarized for the current small-power wireless power charger and NFC application and mid-power home appliance and high-power automotive application in the near future.

Phase Relationships and Magnetic Properties of HDDR-treated $Sm_3$(Fe,Co,V)$_{29}$ Alloy

  • Kwon, Hae-Woong
    • Journal of Magnetics
    • /
    • v.6 no.4
    • /
    • pp.122-125
    • /
    • 2001
  • Phase relationships of the HDDR (hydrogenation, disproportionation, desorption and recombination)-treated Sm$_3$(Fe,M)$_{29}$-type alloy with chemical composition of Sm$_{9}$Fe$_{65}$ $Co_{20}$V$_{6}$ were studied by X-ray diffraction (XRD) and by thermomagnetic analysis (TMA). The alloy was disproportionated into a mixture of $SmH_{x}$ and $\alpha$-Fe at high temperature under hydrogen gas. The disproportionated material was recombined into a mixture of Sm-(Fe,M) (M = Co and/or V) and $\alpha$-Fe phases. The structure of the Sm-(Fe,M) phase was dependent upon the recombination conditions, and a detailed phase diagram showing the phase relationships in the HDDR-treated alloy has been established. The Sm-(Fe,M) phase in material recombined above $900^{\circ}C$ had the $Sm_2Fe_{17}$-type structure, and it exhibited the $SmFe_{7}$-type structure when recombined at temperatures ranging from $700^{\circ}C$ to $850^{\circ}C$. Recombination below $650^{\circ}C$ led to the $SmFe_3$-type structure of the Sm-(Fe,M) phase. Curie temperatures of the Sm-(Fe,M) phases in the recombined material were significantly higher than those of the corresponding stoichiometric phases. It was suggested that the chemical composition of the Sm-(Fe,M) phases may be significantly different from that of the corresponding stoichiometric phases. All the HDDR-treated $Sm_{9}Fe_{65}Co_{20}V_{6}$ materials showed the soft magnetic features regardless of the phase constitution.n.

  • PDF

Microstructure and Magnetic Properties of Electroplated Ni-Fe Permalloy Thin Films by Saccharin Concentration in Electrolytes (전해액 내 사카린의 농도 변화에 의한 전기도금 니켈-철 퍼멀로이 박막의 미세구조와 자기적 특성 변화)

  • Lee, Ho-Jun;Bang, Won-Bae;Hong, Ki-Min;Ko, Young-Dong;Chung, Jin-Seok;Lee, Hee-Bok
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.138-141
    • /
    • 2009
  • We studied the effects of Saccharin on the properties of electroplated Ni-Fe Permalloy thin films. When 0 to 1 ${\mu}mol/L$ of Saccharin was added to the plating electrolyte, the grain sizes of the deposits are found to decrease, which reduces the surface roughness and the coercivity and increases the permeability and magnetoimpedance. The reduction in the grain sizes is strongly correlated with increases in the incremental permeability and the magnetoimpedance. We demonstrated that Saccharine is a useful additive for the electrodeposition of soft Permalloy thin films and that the softness can be adjusted by varying the concentration of Saccharin.