• Title/Summary/Keyword: Soft magnetics

Search Result 290, Processing Time 0.018 seconds

Angle Sensors Based on Oblique Giant Magneto Impedance Devices

  • Kim, Do-Hun;Na, Ji-Won;Jeung, Won-Young
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.42-46
    • /
    • 2009
  • The measurement of external magnetic field orientation using Giant Magneto Impedance (GMI) sensors has been performed. A soft magnetic alloy of $Co_{30}Fe_{34}Ni_{36}$ was electroplated on a Si wafer with a CoFeNi seed layer. V-shaped microwire patterns were formed using a conventional photolithography process. An external magnetic field was generated by a rectangular AlNiCo permanent magnet. The reference direction was defined as the external magnetic field direction oriented in the middle of 2 GMI devices. As the orientation of the magnetic field deviated from the reference direction, variation in the field component along each device introduced voltage changes. It was found that, by taking the voltage difference between the left and right arms of the Vshaped device, the nonlinearity of each device could be significantly reduced. The fabricated angle sensor had a linear range of approximately $70^{\circ}$ and an overall sensitivity of approximately 10 mV.

THE EFFECT OF NITROGEN ON THE MICROSTRUCTURE AND THE CORROSION RESISTANCE OF Fe-Hf-C-N THIN FILMS

  • Choi, J.O.;Han, S.H.;Kim, H.J.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.641-644
    • /
    • 1995
  • We have studied the effect of the nitrogen on the microstructure, thermomagnetic properties and corrosion resistance of Fe-Hf-C-N nanocrystalline thin films with high permeability and high saturation magnetization. These films were fabricated by reactive sputtering in $Ar+N_{2}$ plasma using an rf magnetron sputtering apparatus. As $P_{N2}$ increases, the microstructure changes from amorphous to crystalline $\alpha$-Fe phase and again returns to amorphous one. Spin wave stiffness constant increases with $P_{N2}$ until 5% $P_{N2}$, and then decreases with the further increase. This trend corresponds well with that of the microstructure with increasing $P_{N2}$. The Fe-Hf-C-N films with over 3% $P_{N2}$ show higher corrosion resistance than the N-free Fe-Hf-C films. The Fe-Hf-C-N films are considered to have high potentials for the head core materials suitable for high density recording systems, owing to their excellent soft magnetic properties and corrosion resistance.

  • PDF

Coercivity of Near Single Domain Size Nd2Fe14B-type Particles

  • Kwon, H.W.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.185-189
    • /
    • 2012
  • The coercivity of near single domain size $Nd_2Fe_{14}B$-type particles prepared by ball milling of HDDR-treated $Nd_{12.5}Fe_{80.6}B_{6.4}Ga_{0.3}Nb_{0.2}$ alloy was investigated. The feasibility of a surface nitrogenation for improving the coercivity stability of the fine $Nd_2Fe_{14}B$-type particles was also studied. The near single domain size $Nd_2Fe_{14}B$-type particles had a high coercivity of over 9 kOe. However, the coercivity radically deteriorated as the temperature increased in air (< 2 kOe at $200^{\circ}C$). This coercivity reduction was attributed to the soft magnetic phases, ${\alpha}$-Fe and $Fe_3B$, which formed on the surface of the fine particle due to oxidation. Surface nitrogenation of the fine particles significantly improved the stability of their coercivity. The improvement in coercivity stability was attributed to the formation of a thin nitrogenated layer on the surface of the fine $Nd_2Fe_{14}B$-type particles, which enhanced the anisotropy field and gave improved resistance to oxidation (dissociation).

Ultra Low Field Sensor Using GMI Effect in NiFe/Cu Wires

  • Kollu, Pratap;Kim, Doung-Young;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.35-39
    • /
    • 2007
  • A highly sensitive magnetic sensor using the Giant MagnetoImpedance effect has been developed. The sensor performance is studied and estimated. The sensor circuitry consists of a square wave generator (driving source), a sensing element in a form of composite wire of a 25 $\mu$m copper core electrodeposited with a thin layer of soft magnetic material ($Ni_{80}Fe_{20}$), and two amplifier stages for improving the gain, switching mechanism, scaler circuit, an AC power source driving the permeability of the magnetic coating layer of the sensing element into a dynamic state, and a signal pickup LC circuit formed by a pickup coil and an capacitor. Experimental studies on sensor have been carried out to investigate the key parameters in relation to the sensor sensitivity and resolution. The results showed that for high sensitivity and resolution, the frequency and magnitude of the ac driving current through the sensing element each has an optimum value, the resonance frequency of the signal pickup LC circuit should be equal to or twice as the driving frequency on the sensing element, and the anisotropy of the magnetic coating layer of the sensing wire element should be longitudinal.

Crystallographic and Magnetic Properties of MnxFe3-xO4 Powders

  • Kwon, Woo Hyun;Lee, Jae-Gwang;Choi, Won Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.26-29
    • /
    • 2013
  • $Mn_xFe_{3-x}O_4$ powders have been fabricated by using sol-gel methods; their crystallographic and magnetic properties were investigated by using X-ray diffraction, scanning electron microscopy, M$\ddot{o}$ssbauer spectroscopy, and vibrating sample magnetometer. The $Mn_xFe_{3-x}O_4$ ferrite powders annealed at $500^{\circ}C$ had a single spinel structure regardless of the $Mn^{2+}$-doping amount and their lattice constants became larger as the $Mn^{2+}$ concentration was increased. Their Mossbauer spectra measured at room temperature were fitted with 2 Zeeman sextets due to the tetrahedral and octahedral sites of Fe ions, which made them ferrimagnetic. The magnetic behavior of $Mn_xFe_{3-x}O_4$ powders showed that the $Mn^{2+}$-doping amount made their saturation magnetization increase, but there were no severe effects on their coercivities. The saturation magnetization of the $Mn_xFe_{3-x}O_4$ powder varied from 38 emu/g to 70.0 emu/g and their minimum coercivity was 111.1 Oe.

Magnetic Microstructures and Corrosion Behaviors of Nd-Fe-B-Ti-C Alloy by Ga Doping

  • Wu, Qiong;Zhang, Pengyue;Ge, Hongliang;Yan, Aru;Li, Dongyun
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.240-244
    • /
    • 2013
  • The influences of Gallium doping on the magnetic microstructures and corrosion behaviors of Nd-Fe-B-Ti-C alloys are investigated. The cooling rate for obtaining fully amorphous structure is raised, and the glassforming ability is improved by the Ga addition. The High Resolution Transmission Electron Microscopy image shows that the ${\alpha}$-Fe and $Fe_3B$ soft magnetic phases become granular surrounded by the $Nd_2Fe_{14}B$ hard magnetic phase. The rms and $({\Delta}{\varphi})_{rms}$ value of Nd-Fe-B-Ti-C nanocomposite alloy thick ribbons in the typical topographic and magnetic force images detected by Magnetic Force Microscopy(MFM) decreases with 0.5 at% Ga addition. The corrosion resistances of $Nd_9Fe_{73}B_{12.6}C_{1.4}Ti_{4-x}Ga_x$ (x = 0, 0.5, 1) alloys are enhanced by the Ga addition. It can be attributed to the formation of more amorphous phases in the Ga doped samples.

Soft Magnetic Properties of FeTaNC Nanocrystalline Thin Films (FeTaNC 초미세결정박막의 반응가스 분압에 따른 자기특성 변화)

  • 고태혁;신동훈;김형준;남승의;안동훈
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.3
    • /
    • pp.151-157
    • /
    • 1996
  • Magnetic properties and microstructures of FeTaNC thin films, which were deposited by magnetron reactive sputtering rrethod, were investigated as a function of $CH_{4}$ and $N_{2}$ gas partial pressures. Magnetic properties of FeTaNC films depended on total reactive gas pressure as well as $CH_{4}/N_{2}$ pressure ratios. For reactive gas partial pressures of 5~10 %, optimum magnetic properties were observed in the FeTaNC films with proper $CH_{4}/N_{2}$ ratio. On the other hand, at 15% of gas partial pressure, FeTaN and FeTaC films showed superior properties to FeTaNC films. Above 15%, the magnetic properties of films rapidly degraded due to an excess incorporation of C and/or N atoms. Excellent soft magnetic properties of 17 kG of Bs, 0.3 Oe of He, and 4000 of $\mu'$(at 5 MHz) were obtained in the FeTaNC films. High permeabilities of FeTaNC films could be explained by the Fe lattice distortion caused by N atoms, hence reduction of magnetic anisotopy. While precipitated TaN and TaC particles effectively supress the growth of $\alpha-Fe$ grains leading to a good soft magentic properties, FeN and FeC phases such as $Fe_3N$, $Fe_4N$, FexC have detrimental effects.

  • PDF

Magnetic Properties of Three-layered Ferromagnetic Films with a NiFeCuMo Intermediately Super-soft Magnetic Layer (강자성층 사이에 초연자성 NiFeCuMo 중간층을 삽입한 3층 박막구조의 자기적 특성)

  • Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.129-133
    • /
    • 2010
  • Two-layered ferromagnetic alloy films (NiFe, CoFe) with a Conetic (NiFeCuMo) intermediately soft magnetic layer of different thickness were investigated to correlate the coercivity values and magnetization process with the strength of saturation field of hard axis. Thickness dependence of the $H_{EC}$ (coercivity of easy axis), $H_{HS}$ (saturation field of hard axis.), and X (susceptibility) of NiFe and NiFeCuMo thin films for the glass/Ta(5 nm)/[CoFe or NiFe(5 nm-t/2)]/NiFeCuMo(t = 0, 4, 6, 8, 10 nm)/[CoFe or NiFe(5 nm-t/2)]/Ta(5 nm) films prepared by the ion beam deposition method was measured. The magnetic properties $H_{EC}$, $H_{HS}$, and X of two-layered ferromagnetic CoFe, NiFe films with a NiFeCuMo intermediately super-soft magnetic layer were strongly depended on the thickness of NiFeCuMo layer. The value of the coercivity and magnetic susceptibility of the NiFeCuMo film decreased by 25% and doubled relative to that of the NiFe film.

Investigation of Electronic Structures of TCr2O4 (T = Fe, Co, Ni) Spinel Oxides by Employing Soft X ray Synchrotron Radiation Spectroscopy (연 X선 방사광 분광법을 이용한 TCr2O4(T = Fe, Co, Ni) 스피넬 산화물의 전자구조 연구)

  • Kim, Hyun Woo;Hwang, Jihoon;Kim, D.H.;Lee, Eunsook;Kang, J.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.149-153
    • /
    • 2013
  • The electronic structures of $TCr_2O_4$ (T = Fe, Co, Ni) spinel oxides have been investigated by employing synchrotron radiation-based soft X ray absorption spectroscopy (XAS). The measured 2p XAS spectra of transition-metal ions reveal that Cr ions are trivalent ($Cr^{3+}$), and all the T (T = Fe, Co, Ni) ions are divalent ($Fe^{2+}$, $Co^{2+}$, $Ni^{2+}$). It is also found that most of T (T = Fe, Co, Ni) ions occupy the A sites under the tetrahedral symmetry, while Cr ions occupy mainly the B sites under the octahedral symmetry. These findings show that the structures of $TCr_2O_4$ (T = Fe, Co, Ni) are very close to the normal spinel structures. Based on these findings, it is expected that Jahn-Teller (JT) effects are important in $FeCr_2O_4$ and $NiCr_2O_4$. In contrast, $CoCr_2O_4$ maintains the cubic structure without having the JT distortion since both $Cr^{3+}$ and $Co^{2+}$ ions are non-JT ions. This work suggests that the antiferromagnetic interaction between $Cr^{3+}$ and $T^{2+}$ ions plays an important role in determining the magnetic properties of $TCr_2O_4$ (T = Fe, Co, Ni).

Soft X-ray Synchrotron-Radiation Spectroscopy Study of Half-metallic Mn3Ga Heusler Alloy (반쪽 금속 호이슬러 화합물 Mn3Ga의 연 X선 방사광 분광 연구)

  • Seong, Seungho;Lee, Eunsook;Kim, Hyun Woo;Kim, D.H.;Kang, J.S.;Venkatesan, M.;Coey, J.M.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.185-189
    • /
    • 2016
  • By employing photoemission spectroscopy (PES) and soft X-ray absorption spectroscopy (XAS), the electronic structure of the candidate half-metallic antiferromagnet of $Mn_3Ga$ Heusler compound has been investigated. We have studied two ball-milled $Mn_3Ga$ powder samples, one after annealing and the other without annealing, respectively. Based on the Mn 2p XAS study, we have found that Mn ions are nearly divalent in $Mn_3Ga$ and that the Mn ions having the locally octahedral symmetry and those having the locally tetrahedral symmetry are both present in $Mn_3Ga$. We have found relatively good agreement between the measured valence-band PES spectrum of $Mn_3Ga$ and the calculated density of states, which is in agreement with the half-metallic electronic structure of $Mn_3Ga$.