Browse > Article
http://dx.doi.org/10.4283/JKMS.2016.26.6.185

Soft X-ray Synchrotron-Radiation Spectroscopy Study of Half-metallic Mn3Ga Heusler Alloy  

Seong, Seungho (Department of Physics, The Catholic University of Korea)
Lee, Eunsook (Department of Physics, The Catholic University of Korea)
Kim, Hyun Woo (Department of Physics, The Catholic University of Korea)
Kim, D.H. (Department of Physics, The Catholic University of Korea)
Kang, J.S. (Department of Physics, The Catholic University of Korea)
Venkatesan, M. (School of Physics and CRANN, Trinity College)
Coey, J.M.D. (School of Physics and CRANN, Trinity College)
Abstract
By employing photoemission spectroscopy (PES) and soft X-ray absorption spectroscopy (XAS), the electronic structure of the candidate half-metallic antiferromagnet of $Mn_3Ga$ Heusler compound has been investigated. We have studied two ball-milled $Mn_3Ga$ powder samples, one after annealing and the other without annealing, respectively. Based on the Mn 2p XAS study, we have found that Mn ions are nearly divalent in $Mn_3Ga$ and that the Mn ions having the locally octahedral symmetry and those having the locally tetrahedral symmetry are both present in $Mn_3Ga$. We have found relatively good agreement between the measured valence-band PES spectrum of $Mn_3Ga$ and the calculated density of states, which is in agreement with the half-metallic electronic structure of $Mn_3Ga$.
Keywords
compensated half-metallic ferrimagnet; Heusler compound; PES; XAS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Chappert, A. Fert, and F. N. Van Dau, Nature Mater. 6, 813 (2007).   DOI
2 R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Bushchow, Phys. Rev. Lett. 50, 2024 (1983).   DOI
3 B. G. Park, J. Wunderlich, X. Marti, V. Holy, Y. Kurosaki, M. Yamada, H. Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A. B. Shick, and T. Jungwirth, Nature Mater. 10, 347 (2011).   DOI
4 W. E. Pickett, Phys. Rev. Lett. 77, 3185 (1996).   DOI
5 J. H. Park, S. K. Kwon, and B. I. Min, Phys. Rev. B 65, 174401 (2002).   DOI
6 M. S. Park and B. I. Min, Phys. Rev. B 71, 052405 (2005).   DOI
7 S. Wurmehl, H. C. Kandpal, G. H. Fecher, and C. Felser, J. Phys.: Condens. Matter 18, 6171 (2006).   DOI
8 M. Hakimi, M, Venkatesan, K. Rode, K. Ackland, and J. M. D. Coey, J. Appl. Phys. 113, 17B101 (2013).   DOI
9 S. Hufner, Photoelectron Spectroscopy, Vol. 82 in Solid State Sciences, Springer-Verlag, Berlin (1995).
10 F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev. B 42, 5459 (1990).   DOI
11 G. van der Laan and I. W. Kirkman, J. Phys.: Condens. Matter 4, 4189 (1992).   DOI
12 B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev. Lett. 68, 1943 (1992).   DOI
13 C. T. Chen, Y. U. Idzerda, H.-J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, and F. Sette, Phys. Rev. Lett. 75, 152 (1995).   DOI
14 S. P. Cramer, F. M. F. De Groot, Y. Ma, C. T. Chen, F. Sette, C. A. Kipke, D. M. Eichhorn, M. K. Chan, and W. H. Armstrong, J. Am. Chem. Soc. 113, 7937 (1991).   DOI
15 C. Mitra, Z. Hu, P. Raychaudhuri, S. Wirth, S. I. Csiszar, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. B 67, 092404 (2003).   DOI
16 P. Ghigna, A. Campana, A. Lascialfari, A. Caneschi, D. Gatteschi, A. Tagliaferri, and F. Borgatti, Phys. Rev. B. 64, 132413 (2001).   DOI
17 J.-S. Kang, G. Kim, H. J. Lee, D. H. Kim, H. S. Kim, J. H. Shim, S. Lee, H. Lee, J.-Y. Kim, B. H. Kim, and B. I. Min, Phys. Rev. B. 77, 035121 (2008).   DOI
18 B. Balke, G. H. Fecher, J. Winterlik, and C. Felser, Appl. Phys. Lett. 90, 152504 (2007).   DOI
19 J. Winterlik, B. Balke, G. H. Fecher, C. Felser, M. C. M. Alves, F. Bernardi, and J. Morals, Phys. Rev. B. 77, 054406 (2008).   DOI