• Title/Summary/Keyword: Soft magnetic thin film

Search Result 64, Processing Time 0.04 seconds

RF Integrated Electromagnetic-Noise Filters Incorporated with Nano-granular Co41Fe38AI13O8 Soft Magnetic Thin Films on Coplanar Transmission Line

  • Sohn, Jae-Cheon;Yamaguchi Masahiro;Lim, Sang-Ho;Han, Suk-Hee
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.163-170
    • /
    • 2005
  • The RF integrated noise filters are fabricated by photolithography. The stack for the electromagnetic noise filters consists of the nano-granular ($Co_{41}Fe_{38}AI_{13}O_8$) soft magnetic film / $SiO_2$ / Cu transmission line / seed layer (Cu/Ti) / $SiO_2$-substrate. A good signal-attenuation feature along with a low signal-reflection feature is observed in the present filters. Especially in the noise filter incorporated with a $Co_{41}Fe_{38}AI_{13}O_8$ magnetic film with lateral dimensions of $2000{\mu}m$ wide, 15 mm long and $1{\mu}m$ thick, the maximum magnitude of signal attenuation reaches -55 dB, and the magnitude of signal reflection is below -10 dB in the overall frequency range. And this level of signal attenuation is much larger than that of a noise filter incorporated with a Fe magnetic film.

Thickness-dependent magnetic domain structures of Co ultra-thin film investigated by scanning transmission X-ray microscopy

  • Yoon, Ji-Soo;Kim, Namdong;Moon, Kyoung-Woong;Lee, Joo In;Kim, Jae-Sung;Shin, Hyun-Joon;Kim, Wondong
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1185-1189
    • /
    • 2018
  • Thickness-dependent magnetic domain structure of ultrathin Co wedge films (0.3 nm-1.0 nm) sandwiched by Pt layers was investigated by scanning transmission x-ray microscopy (STXM) employing X-ray magnetic circular dichroism (XMCD), utilizing elliptically polarized soft x-rays and electromagnetic fields, with a spatial resolution of 50 nm. The magnetic domain images measured at the Co $L_3$ edge showed the evolution of the magnetic domain structures from maze-like form to the bubble-like form as the perpendicular magnetic field was applied. The asymmetric domain expansion of a 500 nm-scale bubble domain was also measured when the in-plane and perpendicular external magnetic field were applied simultaneously.

OBSERVATION OF THE DOMAIN STRUCTURES IN SOFT MAGNETIC ${(Fe_{97}Al_3)}_{85}N_{15}/Al_2O_3$ MULTILAYERS

  • Stobiecki, T.;Zoladz, M.;Roell, K.;Maass, W.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.14-15
    • /
    • 2002
  • Iron nitride alloy films prepared in the form of laminated ${(Fe_{97}Al_3)}_{85}N_{15}/Al_2O_3$ multilayers (Ml's) due to excellent soft magnetic properties and high saturation magnetization [1, 2] are very promising materials for poles and shields in ultra high density thin film heads. The present work concerns the ferromagnetic (FM) coupling effect as a function of the thickness of $Al_2O_3$ spacers by analysis of the magnetic domain structure.

  • PDF

Preparation for Mn-Zn Ferrite Soft Magnetic Underlayer Perpendicular Magnetic Recording Disk using Mn-Zn-Fe-O Metal Target (Mn-Zn-Fe-O 금속타깃을 이용한 수직자기기록디스크의 하지연자성층용 Mn-Zn ferrite 박막제작)

  • Kong, Sok-Hyun;Kim, Kyung-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.883-887
    • /
    • 2006
  • In order to attain high-rate deposition of Mn-Zn ferrite thin film for soft magnetic underlayer in perpendicular magnetic recording media, a reactive sputtering using powder-metal targets under the mixture gas of Ar and $O_{2}$ was performed. It was succeeded that Mn-Zn ferrite films with (111) crystal orientation were deposited on Pt(111) underlayer without any annealing process. The film revealed 3.4 kG of 4 ${\pi}Ms$, 70 Oe of coercivity. The deposition rate of the new method was 16 times as high as that of the conventional method using ferrite target.

Magnetic Properties of Nanocrystalline CoW Thin Film Alloys Electrodeposited from Citrate Baths

  • Park, Doek-Yong;Ko, Jang-Myoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.236-241
    • /
    • 2003
  • Magnetic CoW thin film alloys were electrodeposited from citrate baths to investigate the resulting microstructure and magnetic properties. Deposit tungsten (W) content in the films electrodeposited at $70^{\circ}C$ were independent of current density, while coercivity decreased from hard $(H_{c,//}\~150\;Oe\;and\;H_{c.{\bot}}\;\~240\;Oe)$ to soft magnetic properties $(H_{c,//}\~20\;Oe\;and\;H_{c.{\bot}}\;\~30\;Oe)$ with increasing current densities from $10\;to\;100mA{\cdot}cm^2$, with deposit W content $(\~40\%)$ relatively unaffected by the applied current density. X-ray diffraction analysis indicated that hcp $Co_3W$ phases [(200), (201) and (220) planes] in the CoW films electrodeposited at $70^{\circ}C\;and\;10mA{\cdot}cm^{-2}$ were dominant, whereas amorphous CoW phases with small amount of hcp $Co_3W$ [(002) planes] were dominant with deposition at $70^{\circ}C\;and\;100mA{\cdot}cm^{-2}$. At intermediate current densities $(25\;and\;50mA{\cdot}cm^{-2}),\;hop\;Co_3W$ phases [(200), (002), (201) and (220)] were observed. The average grain size was measured to be 30 nm from Sheller formula. It is suggested that the change of the deposit coercivities in the CoW thin films electrodeposited at $70^{\circ}C$ is attributed to the change of microstructures with varying the current density. Nanostructured $Co_3W/amorphous-CoW$ multilayers were fabricated by alternating current density between 10 and $100 mA{\cdot}cm^{-2}$, varying the individual layer thickness. The magnetic properties of $Co_3W/amorphous-CoW$ multilayers were strongly dependent on the thickness of the alternating hard and soft magnetic thin films. The nanostructured $Co_3W/amorphous-CoW$ multilayers exhibited a shift from low to high coercivities suggesting a strong coupling effect.

Nano-Granular Co-Fe-AI-O Soft Ferromagnetic Thin Films for GHz Magnetic Device Applications

  • Sohn, Jae-Cheon;Byun, Dong-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.143-147
    • /
    • 2006
  • Co-Fe-Al-O nanogranular thin films were fabricated by RF-magnetron sputtering under an $Ar+O_2$ atmosphere. High resolution transmission electron microscopy revealed that the Co-Fe-Al-O films are composed of bcc (Co, Fe) nanograins finer than 5 nm and an Al-O amorphous phase. A very large electrical resistivity of $374{\mu}{\Omega}cm$ was obtained, together with a large uniaxial anisotropy field of 50 Oe, a hard axis coercivity of 1.25 Oe, and a saturation magnetization of 12.9 kG. The actual part of the relative permeability was measured to be 260 at low frequencies and this value was maintained up to 1.3 GHz. The ferromagnetic resonance frequency was 2.24 GHz. The resulting Co-Fe-Al-O nanogranular thin films with a high electrical resistivity and high resonance frequency are considered to be suitable for GHz magnetic device applications.

Study on Heterogeneous Structures and High-Frequency Magnetic Properties Amorphous CoZrNb Thin Films (비정질 CoZrNb 박막의 불균일 구조와 고주파 자기특성에 관한 연구)

  • 정인섭;허재헌
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.31-36
    • /
    • 1991
  • Structural and compositional heterogeneities of sputter deposited, amorphous $Co_{87}Zr_{4}NB_{9}$ thin films were investigated using TEM and EDS with windowless detector. The films deposited with substrate bias and annealed in rotating magnetc field showed two amorphous phases of Co-rich region and (ZrNb)oxide-rich region, and revealed 'ultra-soft' magnetic properties. Revesible bias-responses and overdamped frequency responses, along with small Hc, Hk and Mr/Ms ratio, give the possibility of ultra-soft magnetic behavior fo CoZrNb thin films. We proposed the vortex type magnetization distribution in remanent state which was correlated with the thin film heterogeneity. Then, the ultra-soft characteristics of the compositionally heterogeneous films were explained by the spin vortices that minimized the total magnetostatic and exchange coupling energies.

  • PDF