• 제목/요약/키워드: Soft Surface

검색결과 970건 처리시간 0.028초

Microgrooves on titanium surface affect peri-implant cell adhesion and soft tissue sealing; an in vitro and in vivo study

  • Lee, Hyo-Jung;Lee, Jaden;Lee, Jung-Tae;Hong, Ji-Soo;Lim, Bum-Soon;Park, Hee-Jung;Kim, Young-Kwang;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • 제45권3호
    • /
    • pp.120-126
    • /
    • 2015
  • Purpose: With the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues. Methods: Three types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured. Human gingival fibroblasts (hGFs) and murine osteoblastic cells (MC3T3-E1) were seeded onto the titanium discs for immunofluorescence assay of adhesion proteins. Commercially pure titanium implants with microgrooves on the coronal microthreads design were inserted into the edentulous mandible of beagle dogs. After 2 weeks and 6 weeks of implant insertion, the animal subjects were euthanized to confirm peri-implant tissue healing pattern in histologic specimens. Results: Group C presented the lowest water contact angle ($62.89{\pm}5.66{\theta}$), highest surface energy ($45{\pm}1.2mN/m$), and highest surface roughness ($Ra=22.351{\pm}2.766{\mu}m$). The expression of adhesion molecules of hGFs and MC3T30E1 cells was prominent in group C. Titanium implants with microgrooves on the coronal portion showed firm adhesion to peri-implant soft tissue. Conclusions: Microgrooves on the titanium surface promoted the adhesion of gingival fibroblasts and osteoblastic cells, as well as favorable peri-implant soft tissue sealing.

정전 발전 기반 소프트 로봇 응용 최신 기술 (Recent Advances on TENG-based Soft Robot Applications)

  • 성정빈;최덕현
    • Composites Research
    • /
    • 제35권6호
    • /
    • pp.378-393
    • /
    • 2022
  • 마찰전기 나노발전기(이하 TENG)의 새로운 발전 기술은 에너지 수집 및 자가 전력 공급 감지 응용 분야의 긍정적 전망으로 인해 점점 더 많은 관심을 받고 있다. 또한 최근 소프트로봇의 부상은 플렉시블과 소프트센서, 액추에이터 개발에 대한 폭넓은 관심을 불러 일으키고 있다. TENG는 액추에이터와 자가 전력 공급 센서를 구동하는 유망한 전원으로 간주되어 소프트웨어 로봇, 소프트 센서 및 액추에이터 개발을 위한 독창적인 방법을 제공한다. 이 리뷰에서는 TENG를 기반으로 다양한 형태와 기능을 가진 소프트웨어 로봇을 소개하려 한다. 그 중 자연계의 구조, 표면 형태, 재료 특성과 센싱/발전 메커니즘을 모방한 바이오닉 소프트 로봇의 설계는 TENG 성능 향상에 큰 도움이 되었다. 또한 다양한 바이오닉 소프트 로봇은 TENG의 간단한 구조, 자체 전력 공급 특성 및 조정 가능한 출력으로 인해 이전 구동 방식보다 향상되었다. 그리하여 이 리뷰에서는 TENG가 활성화한 소프트 로봇 응용의 특정 핵심 영역에서 다양한 연구를 종합적으로 검토하려 한다. 리뷰를 요약하자면 먼저 최근 개발된 다양한 TENG 기반 소프트웨어 로봇을 정리하고 다양한 장비 구조, 표면 형태 및 자연적으로 영감을 받은 재료를 비교 분석하여 그에 따른 TENG 성능 개선을 수행한다. 자연계에 사용되는 다양한 유비쿼터스 감지 원리와 발전 메커니즘 및 유사한 인공 TENG 설계가 확인되었고 촉각 디스플레이 및 웨어러블 기기, 인공 전자 피부 등의 기기에 TENG를 활성화하는 바이오닉 응용에 대해 논의한다. 마지막으로 TENG 기반 센서 및 구동 장비의 로봇 실제 적용에 대한 발전 기회, 도전 및 미래 전망을 분석한다.

부드러운 지면에서의 휴머노이드 로봇의 안정보행 (Stable Walking of a Humanoid Robot under Soft Terrains)

  • 유영국;김전걸
    • 한국정밀공학회지
    • /
    • 제26권4호
    • /
    • pp.72-81
    • /
    • 2009
  • The purpose of this paper is to accomplish the stable humanoid robot walking on the soft terrains. The goal of the humanoid robot development is to make the robotic system perform some tasks in human living environment. However, human dwelling environments are very different from those of laboratories, where varied experiments are performed by the robot. In many cases, the ground is soft or elastic unlike the floor of a laboratory. When a robot walks on the soft ground, the sole of robot contacts the uneven ground. This results in unstable walking or walking may be impossible according to the degree of softness. Therefore, the algorithm that facilitates stable walking on the soft ground surface is required. In this paper, we suggest an algorithm that controls the ankle to help the robot walk stably on the soft ground using the humanoid robot (ISHURO-II) as a real model. A humanoid robot walking on the soft ground was simulated to verify that the proposed algorithm results in stable walking.

Designing a Magnetically Controlled Soft Gripper with Versatile Grasping Based on Magneto-Active Elastomer

  • Li, Rui;Li, Xinyan;Wang, Hao;Tang, Xianlun;Li, Penghua;Shou, Mengjie
    • Journal of Information Processing Systems
    • /
    • 제18권5호
    • /
    • pp.688-700
    • /
    • 2022
  • A composite bionic soft gripper integrated with electromagnets and magneto-active elastomers is designed by combining the structure of the human hand and the snake's behavior of enhancing friction by actively adjusting the scales. A silicon-based polymer containing magnetized hard magnetic particles is proposed as a soft finger, and it can be reversibly bent by adjusting the magnetic field. Experiments show that the length, width, and height of rectangular soft fingers and the volume ratio of neodymium-iron-boron have different effects on bending angle. The flexible fingers with 20 vol% are the most efficient, which can bend to 90° when the magnetic field is 22 mT. The flexible gripper with four fingers can pick up 10.51 g of objects at the magnetic field of 105 mT. In addition, this composite bionic soft gripper has excellent magnetron performance, and it can change surface like snakes and operate like human hands. This research may help develop soft devices for magnetic field control and try to provide new solutions for soft grasping.

Evaluation of a Visible Implant Fluorescent Elastomer Tag in the Soft-shelled Turtle, Pelodiscus sinensis

  • Park, Min-Ouk;Seol, Dong-Won;Im, Soo-Yeon;Hur, Woo-June;Park, In-Seok
    • Fisheries and Aquatic Sciences
    • /
    • 제10권4호
    • /
    • pp.226-229
    • /
    • 2007
  • Survival, tag retention and tag readability were compared among the control and three treatment groups of soft-shelled turtles, Pelodiscus sinensis Crother, 2000 (mean body $weight{\pm}SD$: $182.6{\pm}13.7\;g$), marked with visible implant fluorescent elastomer (VIFE) tags for 16 months. Mortality 4 to 16 months after tagging was attributed to collection and handling stress rather than to the tagging itself. Tags applied to the web surface between the fourth and fifth dactyl of the hindfoot appeared to have the highest retention rates, while adipose eyelid tagging had high tag readability but a high loss rate. We conclude that in soft-shelled turtles, the most suitable region for VIFE tagging is on the web surface between the fourth and fifth dactyls of the hindfoot.

FeCo의 결정성 및 조성 제어를 통한 자기 특성 향상 (Enhanced magnetic properties of FeCo alloys by engineering crystallinity and composition)

  • 김단비;김지원;엄누시아;박성흠;임재홍
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.32.1-32.1
    • /
    • 2018
  • Novel soft magnetic materials can be achieved by altering material properties such as morphology, composition, crystallinity, and grain size of soft magnetic alloys. Especially, magnetic properties (i.e., saturation magnetization, coarcivity) of soft magnetics are significantly affected by grain boundaries which act as a control of magnetic domain wall movement. Thus, we herein develop a two-step electroless plating method to control morphology and grain size of FeCo films for excellent magnetic properties. Accordingly, the chemical composition to control the degree of polarization of FeCo alloys was altered by electroless deposition parameters; for example, electrolyte concentration and temperature. The grain size and crystallinity of FeCo alloys was dramatically affected by the reaction temperature because the grain growth mechanism dominantly occurs at $90^{\circ}C$ where as the neucleation only happens at $50^{\circ}C$. By simply controlling the temperature, the micron-sized FeCo grains embedded FeCo film was synthesized where the large grains allow high magnetization originated from larger magnetic domain with low corecivity and the nano-sized grains allow excellent soft magnetic properties due to the magnetic correlation length.

  • PDF

성토에 따른 지반의 측방변위와 지표면 융기량 (Lateral Displacement and Ground Rising Movement with Soil Embankment)

  • 정지철;신방웅;오세욱
    • 한국지반환경공학회 논문집
    • /
    • 제5권2호
    • /
    • pp.63-69
    • /
    • 2004
  • 최근 연약지반상에 제체 등을 시공 중이나 시공 후에 압밀침하와 수평변위가 발생한다. 그러나 연약지반상의 압밀침하와 전단변위는 동시에 발생하므로 제체선단 아래 깊이에 따른 수평변위량과 수평변위 분포를 정확히 예측한다는 것은 매우 어려운 일이다. 본 연구에서는 고함수비 연약점토 지반에 성토 재하가 발생하는 경우 주변지반의 변위를 실내 모형 실험을 수행하여 연약토의 층후, 재하하중의 크기 및 재하속도 등이 성토본체의 침하량, 주변 지반의 변위, 지표면최대 융기량, 지표면변위 및 영향범위 등을 규명하고자 한다. 이러한 일련의 모형실험에 의하여 측방유동 예측식을 제안하였다.

  • PDF

표층처리공법으로 개량된 초연약지반의 지지력산정방법에 관한 연구 (A Study for Bearing Capacity Calculation Method of Very Soft Ground with Reinforced Surface)

  • 함태규;조삼덕;양기석;유승경
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.303-314
    • /
    • 2010
  • This study, as basic research which was intended to develope the surface reinforcement method using reinforcement material which is applicable to very soft ground in Korea, was aimed at proposing the design parameter for the surface ground improvement method. To that end, a wide width tensile test using geotextile, geogrid and steel bar (substitute for bamboo) and 49 kinds of the laboratory model tests were conducted. And the result the study suggested $\beta_s$, the stiffness coefficient to evaluate the stiffness effect of reinforcement materials. Then, it was also found that the stiffness coefficient, $\beta_s$ as the testing constant would be appropriate as high as 1.0, 1.1 and 1.5 for geotextile, geogrid and steel bar, respectively. And It was evaluated that the stiffness effect affecting reinforcement improvement effect would be reduced as the thickness of embeded depth increases and that RFe, the stiffness effect reduction coefficient would have positive correlation with H/B. Finally, it was confirmed that the bearing capacity gained from the method to calculate bearing capacity, which was suggested in the study, would almost correctly estimate the capacity, demonstrating the appropriateness of the proposed bearing capacity calculation method.

  • PDF

족저 접촉면의 경도가 경추와 요추의 가동범위에 미치는 영향 (The Effect of Cervical & Lumbar Range of Motion According to Plantar Surface Compliance)

  • 조현래;채정병
    • PNF and Movement
    • /
    • 제5권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Purposes : The purpose of this study was to measurement the change of cervical and lumbar range of motion according to plantar surface compliance in standing status. Method : The thirty normal adult(15men and 15women) aged between 20 and 35 were assigned to 3 group: first, in bottom piece shoe plantar form not changed the control group, the fore foot which was hard and the rear foot was soft the FHRS Group, the fore foot which was soft and the rear foot was hard the FSRH Group. The cervical and lumbar Range of motion was examined before and after adaptation with corresponding form types Results : This study investigated the change which appears when it will be soft and hard to be. As a result, FHRS group the cervical extension and lumbar flexion increased and the cervical flexion and lumbar extension decreased(p<0.05). In opposition, the FSRH group the cervical flexion and lumbar extension increased and the cervical extension and lumbar flexion decreased(p<0.05).

  • PDF