• Title/Summary/Keyword: Soft Power

Search Result 1,243, Processing Time 0.025 seconds

Single Phase Utility Frequency AC-High Frequency AC Matrix Converter Using One-Chip Reverse Blocking IGBTs based Bidirectional Switches

  • Hisayuki, Sugimura;Kwon, Soon-Kurl;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.125-128
    • /
    • 2006
  • This paper presents a novel type soft switching PWM power frequency AC-AC converter using bidirectional active switches or single phase utility frequency AC-high frequency AC matrix converter. This converter can directly convert utility frequency AC (UFAC, 50Hz/60Hz) power to high frequency AC (HFAC) power ranging more than 20kHz up to 100kHz. A novel soft switching PWM prototype of high frequency multi-resonant PWM controlled UFAC-HFAC matrix converter using antiparallel one-chip reverse blocking IGBTs manufactured by IXYS corp. is based on the soft switching resonance with asymmetrical duty cycle PWM strategy. This single phase UFAC-HFAC matrix converter has some remarkable features as electrolytic capacitor DC busline linkless topology, unity power factor correction and sine-wave line current shaping, simple configuration with minimum circuit components, high efficiency and downsizing. This series load resonant UFAC-HFAC matrix converter, incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances in home uses and business-uses. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are illustrated and discussed on the basis of simulation and experimental results.

  • PDF

There-Phase Voltage-Source Soft-Switching Inverter with Auxiliary High Frequency Transformer Linked Power Regeneration Resonant Snubbers

  • Hattori, Hiroshi;Nakaoka, Mutsuo;Sakamoto, Kenji
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.153-158
    • /
    • 1998
  • In this paper, a prototype of the auxiliary resonant commutated snubber circuit(ARCS) with a high frequency transformer power regeneration loop is described for voltage source type sinewave inverter system. This is a new soft switching topology developed for three phase voltage source soft-switching inverter, active power filter and reactive power compensator has significant advantage of current rating reduction for auxiliary active switching devices. In addition, this paper presents a novel prototype of voltage-source soft switching space vector-modulated inverter with ARCS mentioned above, which is more suitable and acceptable for high-power utility interactive power conditioning, along with a digital control scheme. The steady-state operating analysis of ARCS has the remarkable features and the practical design procedure of this resonant snubber are illustrated on the basis of computer simulation analysis. The operating performance evaluations in the steady-state of this three phase voltage source soft switching inverter are discussed and compared with the three phase voltage source hard switching inverter.

  • PDF

Experimental Waveforms of Single-Pulse Soft-Switching PFC Converter

  • Katsunori Taniguchi;Koh, Kang-Hoon;Lee, Hyun-Woo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.56-63
    • /
    • 2004
  • A new driving circuit for the SPSS (Single-Pulse Soft-Switching) PFC converter is proposed. The switching device of a SPSS converter switches once in every half cycle of an AC commercial power source. Therefore, it can be solved many problems caused by the high frequency operation. The proposed SPSS converter achieves the soft-switching operation and the EMI noise can be reduced. The resonant capacitor voltage supplies to the resonant inductor even if the input AC voltage is the vicinity of zero cross voltage. Then, the power factor and input current waveform can be improved without delay time. A new driving circuit achieves the operation of SPSS converter by one switching drive circuit. The proposed converter can be satisfied the IEC standard sufficiently

Downlink Transmit Power Allocation in Soft Fractional Frequency Reuse Systems

  • Kim, Dong-Hee;Ahn, Jae-Young;Kim, Ho-Joon
    • ETRI Journal
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Downlink transmit power allocation schemes are proposed for soft fractional frequency reuse (FFR) in loose and tightly coordinated systems. The transmit powers are allocated so that the loss of spectral efficiency from the soft FFR is minimized, and the required cell edge user throughput is guaranteed. The effect of the soft FFR on spectral efficiency is evaluated depending on the power allocation schemes and the number of subbands. Results show that the loss of spectral efficiency from the soft FFR can be reduced by configuring an appropriate number of subbands in the loosely coordinated systems. In tightly coordinated systems, results show that the loss of spectral efficiency can be minimized regardless of the number of subbands due to its fast coordination.

Auxiliary Resonant Commutated Leg Snubber Linked 3-Level 3-Phase Voltage Source Soft-Switching Inverter

  • Yamamoto, Masayoshi;Sato, Shinji;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.90-98
    • /
    • 2003
  • This paper presents a performance analysis in steady-state of a novel type Auxiliary Resonant Commutation Snubber-linked 3-level 3-phase voltage source soft switching inverter suitable and acceptable for high-power applications in comparison with other three types of 3-level 3-phase voltage source soft switching inverters. This soft switching inverter operation which can operate under a condition of Zero Voltage Switching (ZVS). The practical steady -state performances of this inverter are illustrated and evaluated on the basis of the experimental results.

Three Phase Voltage Source Soft Switching Inverter with High Frequency Pulse Current Transformers

  • Inaba, Claudio Y.;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.2 no.4
    • /
    • pp.288-296
    • /
    • 2002
  • In this paper, a high frequency transformer - assisted auxiliary active resonant commutated snubber (HFTA-ARCS) for voltage source soft switching pulse width modulated power conversion circuits is presented. A three phase voltage source type soft switching inverter incorporating HFTA-ARCS circuits in its three bridge legs can reduce current rating of auxiliary active power switches and has sensorless simplified control scheme which any specified boost current management is not required for soft switching. Its operation principle and digital control scheme are described and a practical design method of circuit parameters on this HFTA-ARCS circuit is also introduced on the basis of computer simulation. Moreover, this space voltage vector modulated soft switching inverter system with DSP-based digital control scheme Is discussed and its effectiveness is proved on the basis of performance evaluations. The operating performances of this inverter system are also compared with those of conventional three-phase hard switching inverter under practical conditions of specified parameters.

A New Dual-Active Soft-Switching Converter for an MTEM Electromagnetic Transmitter

  • Wang, Xuhong;Zhang, Yiming;Liu, Wei
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1454-1468
    • /
    • 2017
  • In this study, a new dual-active soft-switching converter is proposed to improve conversion efficiency and extend the load range for an MTEM electromagnetic transmitter in geological exploration. Unlike a conventional DC/DC converter, the proposed converter can operate in passive soft-switching, single-active soft-switching, or dual-active soft-switching modes depending on the change in load power. The main switches and lagging auxiliary switches of the converter can attain soft-switching over the entire load range. The conduction and switching losses are greatly reduced compared with those of ordinary converters under the action of the cut-off diodes and auxiliary windings coupled to the main transformer in the auxiliary circuits. The conversion efficiency of the proposed converter is significantly improved, especially under light-load conditions. First, the working principle of the proposed converter is analyzed in detail. Second, the relationship between the different operating modes and the load power is given and the design principle of the auxiliary circuit is presented. Finally, the Saber simulation and experimental results verify the feasibility and validity of the converter and a 50 kW prototype is implemented.

A Novel Soft-Switching Two-Switch Flyback Converter with a Wide Operating Range and Regenerative Clamping

  • Kim, Marn-Go;Jung, Young-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.772-780
    • /
    • 2009
  • A novel soft-switching two-switch flyback converter is proposed in this paper. This converter is composed of two active power switches, a flyback transformer, a blocking diode, and two passive regenerative clamping circuits. The proposed converter has the advantages of a low cost circuit configuration, a simple control scheme, a high efficiency, and a wide operating range. The circuit topology, analysis, design considerations, and experimental results of the new flyback converter are presented.

Soft-switching Current Source inverter for Power System Interconnection (소프트 스위칭 전류원 인버터를 이용한 계통연계형 전력변환기)

  • 이준기
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.392-395
    • /
    • 2000
  • This paper proposes a soft-switching current -source inverter with a sitched-capacitor module The system operation was analyzed by a theoretical approach with equivalent circuits and verified by a computer simulation with ISPICE software. The proposed system could be effectively applied for the power converter of photovoltaic power generation interconnected with the power system.

  • PDF

A Theoretical Model for Effective Public Diplomacy (효과적인 공공외교 분석을 위한 이론적 모형)

  • Kisuk Cho;Hwajung Kim
    • Journal of Public Diplomacy
    • /
    • v.2 no.2
    • /
    • pp.1-26
    • /
    • 2022
  • Since the seminal publication of Joseph Nye's Soft Power, soft power became the central concept to public diplomacy. However, over-emphasis on soft power, which is still controversial, deterred academics from producing valuable knowledge that can be applied to practices in the field. Soft power is a cause and effect at the same time and thus it makes systematic analysis almost implausible because it is not only a tool for successful public diplomacy, but it is a result of successful diplomacy. This study aims at offering a theoretical framework linking soft power and public diplomacy by including various factors that may affect the outcomes of effective public diplomacy. This theoretical framework assessing the effectiveness of public diplomacy will make it possible to explore how and when new public diplomacy was adopted in a certain country and examine hard and soft power resources. The model also includes political system variables such as ideas and values, institutions, governance, leadership, and communication system, which are expected to influence public diplomacy effectiveness rather than soft power itself. The model yields the effectiveness of public diplomacy by assessing outcome and impact relative to input and output that are applicable to practices. The model is expected to enable both quantitative and qualitative studies generating possible propositions from the model with some preliminary outcomes of comparative case studies.