• 제목/요약/키워드: Sodium-hydrogen exchanger

검색결과 12건 처리시간 0.027초

Antiplatelet Activity of KR-32558, a Novel Selective Sodium/hydrogen Exchanger-1 Inhibitor

  • Lee, Mi-Yea;Yun, Yeo-Pyo
    • 한국식품위생안전성학회지
    • /
    • 제19권3호
    • /
    • pp.161-166
    • /
    • 2004
  • We investigated the antiplatelet effect of a newly synthesized guanidine derivative KR-32558, a sodium-hydrogen exchanger-1 (NHE-1) inhibitor, together with the elucidation of the possible mechanisms of action. KR-32558 concentration -dependently inhibited the aggregation of washed rabbit platelets induced by collagen (10 ${\mu}g/ml$) with an $IC_{50}$ value of 85.9 ${\mu}M$, but with much weaker potency against aggregation induced by thapsigargin (0.5 ${\mu}M$) or A23187 (5 ${\mu}M$). And had no effect on platelet aggregation induced by arachidonic acid (100 ${\mu}M$), thrombin (0.05 U/ml) and U46619 (1 ${\mu}M$) up to 100 ${\mu}M$. KR-32558 completely inhibited the $[Ca^{2+}]_i$ mobilization induced by collagen at concentration of 100${\mu}iM$. Taken together, these observation suggest that KR-32558 selectively inhibited collagen-mediated platelet aggregation by blocking the cytoplasmic calcium mobilization in addition to NHE-1 inhibition.

Fundamental evaluation of hydrogen behavior in sodium for sodium-water reaction detection of sodium-cooled fast reactor

  • Tomohiko Yamamoto;Atsushi Kato;Masato Hayakawa;Kazuhito Shimoyama;Kuniaki Ara;Nozomu Hatakeyama;Kanau Yamauchi;Yuhei Eda;Masahiro Yui
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.893-899
    • /
    • 2024
  • In a secondary cooling system of a sodium-cooled fast reactor (SFR), rapid detection of hydrogen due to sodium-water reaction (SWR) caused by water leakage from a heat exchanger tube of a steam generator (SG) is important in terms of safety and property protection of the SFR. For hydrogen detection, the hydrogen detectors using atomic transmission phenomenon of hydrogen within Ni-membrane were used in Japanese proto-type SFR "Monju". However, during the plant operation, detection signals of water leakage were observed even in the situation without SWR concerning temperature up and down in the cooling system. For this reason, the study of a new hydrogen detector has been carried out to improve stability, accuracy and reliability. In this research, the authors focus on the difference in composition of hydrogen and the difference between the background hydrogen under normal plant operation and the one generated by SWR and theoretically estimate the hydrogen behavior in liquid sodium by using ultra-accelerated quantum chemical molecular dynamics (UA-QCMD). Based on the estimation, dissolved H or NaH, rather than molecular hydrogen (H2), is the predominant form of the background hydrogen in liquid sodium in terms of energetical stability. On the other hand, it was found that hydrogen molecules produced by the sodium-water reaction can exist stably as a form of a fine bubble concerning some confinement mechanism such as a NaH layer on their surface. At the same time, we observed experimentally that the fine H2 bubbles exist stably in the liquid sodium, longer than previously expected. This paper describes the comparison between the theoretical estimation and experimental results based on hydrogen form in sodium in the development of the new hydrogen detector in Japan.

BI-1 enhances Fas-induced cell death through a Na+/H+-associated mechanism

  • Lee, Geum-Hwa;Kim, Hyung-Ryong;Chae, Han-Jung
    • BMB Reports
    • /
    • 제47권7호
    • /
    • pp.393-398
    • /
    • 2014
  • The role of Bax inhibitor-1 (BI-1) in the protective mechanism against apoptotic stimuli has been studied; however, as little is known about its role in death receptor-mediated cell death, this study was designed to investigate the effect of BI-1 on Fas-induced cell death, and the underlying mechanisms. HT1080 adenocarcinoma cells were cultured in high concentration of glucose media and transfected with vector alone (Neo cells) or BI-1-vector (BI-1 cells), and treated with Fas. In cell viability, apoptosis, and caspase-3 analyses, the BI-1 cells showed enhanced sensitivity to Fas. Fas significantly decreased cytosolic pH in BI-1 cells, compared with Neo cells, and this decrease correlated with BI-1 oligomerization, mitochondrial $Ca^{2+}$ accumulation, and significant inhibition of sodium-hydrogen exchanger (NHE) activity. Compared with Neo cells, a single treatment of BI-1 cells with the NHE inhibitor EIPA or siRNA against NHE significantly increased cell death, which suggests that the viability of BI-1 cells is affected by the maintenance of intracellular pH homeostasis through NHE.

Antiarrhythmic Effects of KR-32570, a Novel Na+-H+ Exchanger Inhibitor, on Ischemia/Reperfusion-Induced Arrhythmias

  • Hwang, Geum-Shil;Seo, Ho-Won;Lee, Kyu-Yang;Lee, Sun-Kyung;Yoo, Sung-Eun;Lee, Byung-Ho
    • Biomolecules & Therapeutics
    • /
    • 제13권1호
    • /
    • pp.20-25
    • /
    • 2005
  • The present study was performed to evaluate antiarrhythmic effects of KR-32570, a novel inhibitor of sodium hydrogen exchanger subtype-1 (NHE-1), in rat arrhythmia induced by focal ischemia and reperfusion. During ischemia, KR-32570 significantly decreased the number of premature ventricular contraction (PVC) from 152.0 times to 75.5, 52.4 and 20.0 times for 0.1, 0.3 and 1.0 mg/kg, respectively (p<0.05) and the duration of ventricular tachycardia (VT) from 88.1 s to 35.8, 7.7 and 1.3 s, respectively(p<0.05) in anesthetized rats subjected to 10-min coronary occlusion of coronary artery. Similarlt to ischemia-induced arrhythmia, KR-32570 significantly decreased reperfusion-induced arrhythmia including PVC (41.3, 21.5, 11.3 and 6.6 times at vehicle, 0.1, 0.3 and 1.0 mg/kg, respectively, p<0.05) and VT (100.5, 64.2, 25.8 and 25.2 s, respectively, p<0.05), and VF (86.9, 27.5, 6.9 and 0 s, respectively, p<0.05). Moreover, KR-32570 dose-dependently decreased the incidence of mortality occurring after reperfusion (41, 27, 18 and 0% at vehicle, 0.1, 0.3, 1.0 mg/kg, respectively). These results suggest that KR-32570 has a potent antiarrhythmic effect in rat arrhythmia induced by ischemia and reperfusion.

Synthesis and Biological Evaluation of 4-Heteroaryl-2-amino-5-methylimidazole Analogs as NHE-1 Inhibitors

  • Lee, Sun-Kyung;Yi, Kyu-Yang;Lee, Byung-Ho;Yoon, Boo-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2621-2625
    • /
    • 2009
  • To identify a non-acylguanidine NHE-1 inhibitor, an acylguanidne group was replaced with an imidazole group in the potent NHE-1 inhibitors with furan or benzothiphene core template, found from our previous studies. We synthesized and biologically evaluated 4-heteroaryl-2-amino-5-methylimidazole derivatives. All those imidazole compounds (16-18) represented the potent NHE-1 inhibitory activities, similar to the corresponding acylguanidine compounds.

Carbonic anhydrase influences asymmetric sodium and acetate transport across omasum of sheep

  • Rabbani, Imtiaz;Rehman, Habib;Martens, Holger;Majeed, Khalid Abdul;Yousaf, Muhammad Shahbaz;Rehman, Zia Ur
    • Animal Bioscience
    • /
    • 제34권5호
    • /
    • pp.880-885
    • /
    • 2021
  • Objective: Omasum is an important site for the absorption of short chain fatty acids. The major route for the transport of acetate is via sodium hydrogen exchanger (NHE). However, a discrepancy in the symmetry of sodium and acetate transport has been previously reported, the mechanism of which is unclear. In this study, we investigated the possible role of carbonic anhydrase (CA) for this asymmetry. Methods: Omasal tissues were isolated from healthy sheep (N = 3) and divided into four groups; pH 7.4 and 6.4 alone and in combination with Ethoxzolamide. Electrophysiological measurements were made using Ussing chamber and the electrical measurements were made using computer controlled voltage clamp apparatus. Effect(s) of CA inhibitor on acetate and sodium transport flux rate of Na22 and 14C-acetate was measured in three different flux time periods. Data were presented as mean±standard deviation and level of significance was ascertained at p≤0.05. Results: Mucosal to serosal flux of Na (JmsNa) was greater than mucosal to serosal flux of acetate (JmsAc) when the pH was decreased from 7.4 to 6.4. However, the addition of CA inhibitor almost completely abolished this discrepancy (JmsNa ≈ JmsAc). Conclusion: The results of the present study suggest that the additional protons required to drive the NHE were provided by the CA enzyme in the isolated omasal epithelium. The findings of this study also suggest that the functions of CA may be exploited for better absorption in omasum.

A Novel Polyclonal Antiserum against Toxoplasma gondii Sodium Hydrogen Exchanger 1

  • Xiao, Bin;Kuang, Zhenzhan;Zhan, Yanli;Chen, Daxiang;Gao, Yang;Li, Ming;Luo, Shuhong;Hao, Wenbo
    • Parasites, Hosts and Diseases
    • /
    • 제54권1호
    • /
    • pp.21-29
    • /
    • 2016
  • The sodium hydrogen exchanger 1 (NHE1), which functions in maintaining the ratio of $Na^+$ and $H^+$ ions, is widely distributed in cell plasma membranes. It plays a prominent role in pH balancing, cell proliferation, differentiation, adhesion, and migration. However, its exact subcellular location and biological functions in Toxoplasma gondii are largely unclear. In this study, we cloned the C-terminal sequence of T. gondii NHE1 (TgNHE1) incorporating the C-terminal peptide of NHE1 (C-NHE1) into the pGEX4T-1 expression plasmid. The peptide sequence was predicted to have good antigenicity based on the information obtained from an immune epitope database. After induction of heterologous gene expression with isopropyl-b-D-thiogalactoside, the recombinant C-NHE1 protein successfully expressed in a soluble form was purified by glutathione sepharose beads as an immunogen for production of a rabbit polyclonal antiserum. The specificity of this antiserum was confirmed by western blotting and immunofluorescence. The antiserum could reduce T. gondii invasion into host cells, indicated by the decreased TgNHE1 expression in T. gondii parasites that were pre-incubated with antiserum in the process of cell entry. Furthermore, the antiserum reduced the virulence of T. gondii parasites to host cells in vitro, possibly by blocking the release of $Ca^{2+}$. In this regard, this antiserum has potential to be a valuable tool for further studies of TgNHE1.

Altered Regulation of Renal Acid Base Transporters in Response to Ammonium Chloride Loading in Rats

  • Kim, Eun-Young;Choi, Joon-Seok;Lee, Ko-Eun;Kim, Chang-Seong;Bae, Eun-Hui;Ma, Seong-Kwon;Kim, Suhn-Hee;Lee, Jong-Un;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권2호
    • /
    • pp.91-95
    • /
    • 2012
  • The role of the kidney in combating metabolic acidosis has been a subject of considerable interest for many years. The present study was aimed to determine whether there is an altered regulation of renal acid base transporters in acute and chronic acid loading. Male Sprague-Dawley rats were used. Metabolic acidosis was induced by administration of $NH_4Cl$ for 2 days (acute) and for 7days (chronic). The serum and urinary pH and bicarbonate were measured. The protein expression of renal acid base transporters [type 3 $Na^+/H^+$ exchanger (NHE3), type 1 $Na^+/{HCO_3}^-$ cotransporter (NBC1), Na-$K^+$ ATPase, $H^+$-ATPase, anion exchanger-1 (AE-1)] was measured by semiquantitative immunoblotting. Serum bicarbonate and pH were decreased in acute acid loading rats compared with controls. Accordingly, urinary pH decreased. The protein expression of NHE3, $H^+$-ATPase, AE-1 and NBC1 was not changed. In chronic acid loading rats, serum bicarbonate and pH were not changed, while urinary pH was decreased compared with controls. The protein expression of NHE3, $H^+$-ATPase was increased in the renal cortex of chronic acid loading rats. These results suggest that unaltered expression of acid transporters combined with acute acid loading may contribute to the development of acidosis. The subsequent increased expression of NHE3, $H^+$-ATPase in the kidney may play a role in promoting acid excretion in the later stage of acid loading, which counteract the development of metabolic acidosis.

결정화 반응이 결합된 글루탐산의 이온교환 (Ion Exchange of Glutamic Acid Coupled with Crystallization)

  • 이기세
    • KSBB Journal
    • /
    • 제11권5호
    • /
    • pp.606-612
    • /
    • 1996
  • H형 Dowex 50W-X8 강산성 양이온 교환수지 결럼을 이용하여 glutamic acid를 치환전개하면셔 displacer의 농도를 증가시켜 인위적으로 결정화를 유도하였다. Displacer로 사용한 NaOH 놓도를 증 가시킴으로써 glutamic acid가 그 용해도 한계 이상 으로 농축되면서 컬럼내에서 이동도중 결정층이 형 성되었고 생성된 결정은 effluent stream을 따라 fraction collector로 회수되어졌다. 결정충이 이동하는 동안 clogging이나 압력강하의 문제점이 발생 하지 않았으며 1.0 M NaOH를 사용할 때 62% 의 glutamic acid가 결정으로 회수되었다. 수지로부터 치환되 어 나오는 $H^+$에 의한 OH 의 중화작용으로 인해 NaCI 보다는 NaOH가 효과적인 displacer임 을 알 수 있었으며 보다 sharp하고 농축된 band를 얻을 수 있었다 Glutamic acid 결정층의 이동속도 는 displacer 이통속도와 통일하였는데 그 이유는 결정이 이동하는 기작이 고정상의 interstitial fluid를 따라 이통하는 것이 아니라 일정한 두께의 결정층이 형성된 뒤에 앞경계변에셔는 계속 새로운 결정화가, 그리고 뒷경계변에서는 기존결정의 재용해가 일어나 면서 컬럼을 이동하는 것이며 또한 이 결정화 속도 와 재용해 속도가 비슷하게 균형을 이루고 있기 때 문이라고 설명할 수 있다. 이와 같은 이온교환중의 결정화 현상은 수지에 대한 선택도와 함께 용해도라 는 부가적 분리 인자를 통시에 사용함으로써 특정성 분의 분리효율을 높일 수 있으며 이온교환 후 추가 로 거쳐야 할 결정화 콩정의 부담을 줄일 수 있을 것이다. 결정화-재용해가 비슷한 속도로 반복되는 이통결정층이 형성된다는 관찰은 본 실험에서 사용 된 glutamic acid에만 적용할 수 있는 특이한 현상 일 수 있으며 aspartic acid 등 다른 저용해도 아미 노산에도 일반화할 수 있는 현상인지를 밝허가 위해 서는 보충 연구가 펄요하다. 더우기 이러한 결정화 현상은 단순히 용질의 용해도와 displacer 농도뿐만 아니라 pH, ionic strength, 사용하는 수지의 가교 도, mobile phase의 유속, 사용하는 컬럼의 제원에 도 영향을 받을 것이라고 사료되므로 결정회수율을 극대화하기 위한 최적조건의 도출 빛 그 적용범위의 확대에 대한 연구가 필요하다.

  • PDF