• Title/Summary/Keyword: Sodium titanate

Search Result 29, Processing Time 0.023 seconds

[100]-Texturing of Barium Titanate Ceramics Using Sodium Bismuth Titanate Templates: Challenges and Insights

  • Nu-Ri Ko;Temesgen Tadeyos Zate;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.328-331
    • /
    • 2024
  • This research explores the development of [100]-textured barium titanate (BaTiO3, BT) ceramics using sodium bismuth titanate (Na0.5Bi4.5Ti4O15, NBiT) templates, aimed at leveraging the inherent high dielectric property of BT. However, the attempted texturing was unsuccessful, primarily due to bismuth diffusion from the NBiT templates into the BT matrix below the sintering temperature, at 1,000℃. Systematical exploration about the cause of the failure is involved and alternative approaches are proposed in detail to overcome the challenge. These findings contribute to the understanding of techniques and conditions for textured ceramic fabrication and highlight the need for further research in this area.

Synthesis and Oxidative Catalytic Property of Ruthenium-doped Titanate Nanosheets (루테늄이 도입된 티타네이트 나노시트의 합성 및 산화 촉매 활성 연구)

  • Lee, Yoonhee;Kwon, Ki-Young
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.593-596
    • /
    • 2017
  • Sodium titanate nanosheets were prepared by a hydrothermal synthesis method under basic conditions. Ruthenium was introduced on the surface of sodium titanate nanosheets through an UV irradiation in the aqueous $RuCl_3$ solution. The crystal phase and morphology of synthesized samples were analyzed by X-ray diffraction, transmission electron microscopy and energy dispersive spectroscopy. In addition, the content of Ru was evaluated by inductively coupled plasma. It was proposed that a monomeric form of ruthenium was incorporated on the surface of sodium titanate. Ruthenium incorporated sodium titanates were applied to alcohol oxidation using molecular oxygen as an oxidant. The sample with 7% ruthenium showed a catalytic activity with a turnover frequency value of $2.1h^{-1}$ in oxidizing benzyl alcohol to benzaldehyde without any other byproducts at $105^{\circ}C$ and 1 atmosphere.

Mechanism of Apatite Formation on Bioactive Titanium Metal

  • Kim, Hyun-Min;Takadama, Hiroaki;Miyaji, Fumiaki;Kokubo, Tadashi;Nishiguchi, Shigeru;Nakamura, Takashi
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.336-339
    • /
    • 1998
  • Bioactive titanium metal can be prepared by simple 5M-NaOH treatment and subsuquent heat treatment at $600^{\circ}C$ to form an amorphous sodium titanate on its surface. In the present study, mechanism of apatite formation on the titanium metal was investigated by examining its surface compositional and structural changes in a simulated body fluid. The apatite formation on the metal was found to proceed in the sequence of 1)$Na^+$ ion release from the sodium titanate to form hydrated titania abundant in Ti-OH groups, 2) early and selective binding of calcium ions with the Ti-OH groups to form a calcium titanate, and 3) late binding of phosphate ions to make apatite nucleation and growth. This indicates that Ti-OH groups do not directly induce the apatite nucleation, but via formation of a calcium titanate.

  • PDF

Synthesis and Characterization of Highly Crystalline Anatase Nanowire Arrays

  • Zhao, Yong-Nan;Lee, U-Hwang;Suh, Myung-Koo;Kwon, Young-Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.9
    • /
    • pp.1341-1345
    • /
    • 2004
  • We developed a novel synthesis strategy of titania nanowire arrays by employing simple hydrothermal reaction and ion-exchange reaction techniques. Hydrothermal reactions of metallic titanium powder with $H_2O_2$ in a 10 M NaOH solution produced a new sodium titanate compound, $Na_2Ti_6O_{13}{\cdot}xH_2O$ (x~4.2), as arrays of nanowires of lengths up to 1 mm. Acid-treatment followed by calcination of this material produced arrays of highly crystalline anatase nanowires as evidenced by x-ray diffraction, Raman spectroscopy, and transmission electron microscopy studies. In both cases of sodium titanate and anatase, the nanowires have exceptionally large aspect ratios of 10,000 or higher, and they form arrays over a large area of $1.5 {\times} 3 cm^2$. Observations on the reaction products with varied conditions indicate that the array formation requires simultaneously controlled formation and crystal growth rates of the $Na_2Ti_6O_{13}{\cdot}xH_2O$ phase.

$TiO_2$ Nanotubes Preparation and Its Formation Mechanism

  • Kang, Young-Gu;Shin, Ki-Seok;Ahn, Sung-Hwan;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.487-493
    • /
    • 2010
  • There has been a controversy on the formation mechanism of $TiO_2$ nanotubes. This study was conducted to elucidate the formation mechanism of $TiO_2$ nanotubes. $TiO_2$ nanotubes were prepared by a hydrothermal method. $TiO_2$ nanotubes formation mechanism was investigated by controlling the formation time. It was found that $TiO_2$ nanotubes were formed by growing, not by wrapping of sheets. The phase structure of hydrogen titanate nanotubes was different from that of $TiO_2$ nanotubes. It is important to wash the sodium titanate nanotubes with an acidic solution to get hydrogen titanate nanotubes and then to calcine the hydrogen titanate nanotubes around $400^{\circ}C$ to obtain $TiO_2$ nanotubes.

Direct Determination of Cationic Disordering in Sodium Bismuth Titanate

  • Choi, Si-Young;Ikuhara, Yuichi
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.164-173
    • /
    • 2012
  • The relaxor ferroelectric feature in lead-free perovskite oxides, where the dipoles are randomly oriented and they can be feasibly aligned parallel to the external bias, is attracting lots of attention in the field of piezoelectric materials science, since it is one of candidates to replace the toxic lead-based materials that are still being commercially used. However, the origin of relaxor characteristic and its related atomic structure are still ambiguous. In this study, $Na_{1/2}Bi_{1/2}TiO_3$, chosen as a model relaxor system, was found to exhibit a cationic-disordered atomic structure; and furthermore the nonpolar atomic structure and its related oxygen tilting were ascertained via annular bright field imaging skill. We also found that this cationic disordering gives rise to the local formation of atomic vacancies.

Sodium titanate as an infrared reflective material for cool roof application

  • Ullah, Mahboob;Kim, Hee Jung;Heo, Jae Gu;Roh, Dong Kyu;Kim, Dae-Sung
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.spc1
    • /
    • pp.86-91
    • /
    • 2019
  • A solid-state route was used to prepare sodium titanium oxide (NTO, Na2Ti3O7) as a solar heat protecting material with an impressive solar reflectance (TSR = 94.3%) using a high refractive index rutile TiO2. The solar reflectance of the synthesized NTO was measured using UV-Vis-NIR spectrophotometer. Solar reflectance property of the synthesized compound depends on the calcination temperature. The solar reflectance property of the synthesized NTO powder was compared with commercial rutile TiO2. The compound synthesized at 900 ℃ for 24 hrs had remarkable solar reflectance 94.3% than that calcined below 900 ℃. Crystalline nature, structural property, morphology and optical properties of NTO powders were characterized and analyzed using XRD, FE-SEM, EDS and UV-Vis-NIR spectrophotometer. From the results, we guessed that NTO would be a suitable "solar heat protecting candidate" for energy-saving applications in coating industries.

The Synthesis of Sodium Titanate by the Ion Exchange of H+/Na+ from Hydrous Titanium Dioxide and its Phase Transition (Hydrous Titanium Dioxide로부터 H+/Na+의 이온교환에 의한 티탄산나트륨의 합성 및 성전이)

  • Lee, Jin-Sik;Song, Yon-Ho;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.585-590
    • /
    • 1998
  • Fibrous $Na_xTi_nO_{2n+1}$ whisker was prepared by $H^+/Na^+$ ion-exchange on layered hydrous titanium dioxide ($H_2Ti_4O_9{\cdot}nH_2O$). The ion-exchange reaction was proceeded at 0.5~2.0 M NaOH solution. In the ion-exchange at 2.0 M NaOH solution, 73% of sodium was exchanged and the prepared $Na_xTi_nO_{2n+1}$ whisker was a fibrous crystal of about $10{\sim}20{\mu}m$ of length and about $0.7{\mu}m$ of diameter. The phase transition of the ion-exchange phases identified by the thermal analysis. The result showed that the $Na_xTi_nO_{2n+1}$ whisker was decomposed into $Na_2Ti_6O_{13}$ and $TiO_2$ in the temperature of $200{\sim}600^{\circ}C$.

  • PDF

The effect of nano-sized starting materials and excess amount of Bi on the dielectric/piezoelectric properties of 0.94[(BixNa0.5)TiO3]-0.06[BaTiO3] lead free piezoelectric ceramics

  • Khansur, Neamul Hayet;Ur, Soon-Chul;Yoon, Man-Soon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • In an approach to acclimate ourselves torecent ecological consciousness trend, a lead-free piezoelectric material, bismuth sodium titanate (abbreviated as BNT) based bismuth sodium barium titanate (abbreviated as BNT-BT), was considered as an environment-friendly alternative for a lead based piezoelectric system. Ceramic specimens of0.94[(BixNa0.5)TiO3]-0.06[BaTiO3] (x = 0.500~0.515) compositions were prepared by a modified mixed oxide method. To increase the chemical homogeneity andre action activity, high energy mechanical milling machine and pre-milled nanosized powder has been used. In this method (BixNa0.5)TiO3 (x=0.500~0.515) andBaTiO3 were prepared separately from pre-milled constituent materials at low calcination temperature and then separately prepared BNTX (X=1, 2, 3 and 4) and BT were mixed by high energy mechanical milling machine. Without further calcination step the mixed powders were pressed into disk shape and sintered at $1110^{\circ}C$. Microstructures, phase structures and electrical properties of the ceramic specimens were systematically investigated. Highly dense ceramic specimens with homogenous grains were prepared in spite of relatively low sintering temperature. Phase structures were not significantly influenced by the excess amount Bi. Large variation on the piezoelectric and dielectric properties was detected at relative high excess Bi amounts. When $x{\leq}0.505$, the specimens exhibit insignificant variation in piezoelectric and dielectric constant though depolarization temperature is found to be decreased. Considerable amount of decrease in piezoelectric and dielectric properties are observed with higher excess of Bi amounts ($x{\geq}0.505$). This research indicates the advantages of high energy mechanical milling and importance of proper maintenance of Bi stoichiometry.

  • PDF