DOI QR코드

DOI QR Code

[100]-Texturing of Barium Titanate Ceramics Using Sodium Bismuth Titanate Templates: Challenges and Insights

  • Nu-Ri Ko (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Temesgen Tadeyos Zate (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Wook Jo (School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2024.03.06
  • Accepted : 2024.03.26
  • Published : 2024.05.01

Abstract

This research explores the development of [100]-textured barium titanate (BaTiO3, BT) ceramics using sodium bismuth titanate (Na0.5Bi4.5Ti4O15, NBiT) templates, aimed at leveraging the inherent high dielectric property of BT. However, the attempted texturing was unsuccessful, primarily due to bismuth diffusion from the NBiT templates into the BT matrix below the sintering temperature, at 1,000℃. Systematical exploration about the cause of the failure is involved and alternative approaches are proposed in detail to overcome the challenge. These findings contribute to the understanding of techniques and conditions for textured ceramic fabrication and highlight the need for further research in this area.

Keywords

Acknowledgement

The research was supported by the Technology Innovation Program [No.20022441, Development of 5-inch PMN-PT, PIN-PMN-PT piezoelectric single crystal material (5 inch diameter) and piezoelectric device (k33>0.8)] funded by the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea.

References

  1. G. L. Messing, S. Trolier-McKinstry, E. M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P. W. Rehrig, K. B. Eitel, E. Suvaci, M. Seabaugh, and K. S. Oh, Crit. Rev. Solid State Mater. Sci., 29, 45 (2004). doi: https://doi.org/10.1080/10408430490490905 
  2. T. T. Zate, J. W. Sun, N. R. Ko, B. K. Koo, H. L. Yu, M. S. Kim, W. J. Choi, S. J. Jeong, J. H. Jeon, and W. Jo, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 362 (2023). doi: https://doi.org/10.4313/JKEM.2023.36.4.6 
  3. T. Kimura, J. Ceram. Soc. Jpn., 114, 15 (2006). doi: https://doi.org/10.2109/jcersj.114.15 
  4. T. T. Zate, N. R. Ko, H. L. Yu, J. W. Sun, W. Jo, and J. H. Jeon, Sens. Actuators, A, 366, 114929 (2024). doi: https://doi.org/10.1016/j.sna.2023.114929 
  5. M. Kim, A. Upadhyay, K. W. Lim, T. T. Zate, and J. H. Jeon, J. Eur. Ceram. Soc., 41, 7639 (2021). doi: https://doi.org/10.1016/j.jeurceramsoc.2021.08.044 
  6. K. Uchino, Ferroelectric Devices (CRC Press, Boca Raton, USA, 2018) p. 115. 
  7. W. J. Merz, Phys. Rev., 75, 687 (1949). doi: https://doi.org/10.1103/PhysRev.75.687 
  8. C. W. Ahn, G. Choi, I. W. Kim, J. S. Lee, K. Wang, Y. Hwang, and W. Jo, NPG Asia Mater., 9, e346 (2017). doi: https://doi.org/10.1038/am.2016.210 
  9. E. C. Subbarao, J. Phys. Chem. Solids, 23, 665 (1962). doi: https://doi.org/10.1016/0022-3697(62)90526-7 
  10. D. B. Jannet, M. El Maaoui, and J. P. Mercurio, J. Electroceram., 11, 101 (2003). doi: https://doi.org/10.1023/B:JECR.0000015666.44917.a8 
  11. K. Uchino, E. Sadanaga, and T. Hirose, J. Am. Ceram. Soc., 72, 1555 (1989). doi: https://doi.org/10.1111/j.1151-2916.1989.tb07706.x 
  12. C. A. Randall, R. E. Newnham, and L. E. Cross, History of the First Ferroelectric Oxide, BaTiO3, Materials Research Institute, The Pennsylvania State University, University Park, USA (2004). 
  13. M. Dunce, E. Birks, M. Antonova, L. Bikse, K. Kundzins, O. Freimanis, M. Livins, S. Dutkevica, and A. Sternberg, J. Am. Ceram. Soc., 105, 3874 (2022). doi: https://doi.org/10.1111/jace.18395 
  14. L. Zhou, P. M. Vilarinho, and J. L. Baptista, J. Am. Ceram. Soc., 82, 1064 (1999). doi: https://doi.org/10.1111/j.1151-2916.1999.tb01875.x 
  15. A. K. Mahapatra, T. Badapanda, and S. Sarangi, Appl. Phys. A, 127, 593 (2021). doi: https://doi.org/10.1007/s00339-021-04747-8