• Title/Summary/Keyword: Sodium sulfate $(Na_2SO_3)$

Search Result 72, Processing Time 0.029 seconds

Reuse of Sodium Sulfate Recovered from Farm Drainage Salt of San Joaquin Valley in California, U.S.A. as Dyeing Builder of Levelling Dyes (미국 캘리포니아 San Joaquin Valley 농업관개수에서 회수한 Sodium Sulfate의 균염성 염료 조제로의 재활용)

  • 정지윤
    • The Research Journal of the Costume Culture
    • /
    • v.11 no.3
    • /
    • pp.416-422
    • /
    • 2003
  • Agricultural drainage salt generated during irrigation of crops in San Joaquin Valley, California, exceeds 600,000 tons annually and cumulates in the field in a rapid rate. As a result, the waste is taking out more farmlands for salt storage and disposal, imposing serious concerns to environment and local agricultural industry. In searching for a potential solution to reduce or eliminate the waste, this research explored feasibility of producing a value-added product, sodium sulfate, from the waste and utilizing the product in textile dyeing. The results indicated that sodium sulfate could be produced from the salt and could be purified by a recrystalization method in a temperature range within the highest and lowest daily temperatures in summer in the valley. The recovered sodium sulfate samples, with purities ranging from 67% to 99.91, were compared with commercially available sodium sulfate in the dyeing of levelling dyes with nylon/wool fabrics. In nylon/wool fabrics, C.I. Acid Yellow 23 had similar exhaustions among Na₂SO₄ I, Na₂SO₄ II, Na₂SO₄ III and Na₂SO₄ Ⅴ which had similar ratios of sodium sulfate and sodium chloride in recovered salts. Na₂SO₄ Ⅳ had low exhaustion which had low ratios of sodium sulfate and sodium chloride. In nylon/wool fabrics, C.I. Acid Blue 158 had similar exhaustions among Na₂SO₄ I, Na₂SO₄ II, Na2₂SO₄ III, Na₂SO₄ IV and Na₂SO₄ Ⅴ despite of Na₂SO₄ Ⅳ had low ratios of sodium sulfate and sodium chloride Generally, the dyeing of levelling dyes using recovered salts from farm drainage has similar or low exhaustion than the dyeing of levelling dyes using commercial sodium sulfate.

  • PDF

계면활성제를 이용한 우지지방산을 포화지방산과 불포화 지방산의 분리

  • 이옥섭;김점식
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.10 no.1
    • /
    • pp.24-41
    • /
    • 1984
  • Tallow fatty acid consists of mixtures of fatty acids differing in chain length and saturation. In separation of tallow fatty acid, the effects of the type and concentration of detergents and electrolytes were studied. And the changes of acid composition of particular fractions were determined by gas-chromatography. Sodium lauryl sulfate (SLS), sodium lauryl ether sulfate (SLES) and sodium lauryl benzene sulfonate (SLBS) were used as detergents and NaCl, Na2SO4 and MgSO4 were used as electrolytes. At low concentration of detergent, the tallow fatty acid was not fully wetted, and at high concentration, the emulsion was so stable that the tallow fatty acid was not well separated. The addition of proper amount of electrolyte increased the separation efficiency by the decrease of interfacial tension and by the increase of the amount of adsorbed detergent on the surface of solid fatty acid crystals. The optimum range of detergent was 0.4-0.6% (wt.) in SLS, 0.2-0.4% in SLES and 2.0-) .0% in SLBS. And the optimum range of electrolyte was 2.0-2.5% in NaCl, 3.0-4.0% In Na2SO4 and 0.5-1.0% in MgSO4 respectively.

  • PDF

Effects of Magnesium and Sulfate Ions on the Sulfate Attack Resistance of Alkali-activated Materials (알칼리 활성화 결합재 모르타르의 황산염 침식 저항성에 미치는 마그네슘 및 황산 이온의 영향)

  • Park, Kwang-Min;Cho, Young-Keun;Shin, Dong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.415-424
    • /
    • 2017
  • The purpose of this study is to investigate the effect of sulfate (${SO_4}^{2-}$) and magnesium ($Mg^{2+}$) ions on sulfate resistance of Alkali-activated materials using Fly ash and Ground granulated blast furnace slag (GGBFS). In this research, 30%, 50% and 100% of GGBFS was replaced by sodium silicate modules ($Ms(SiO_2/Na_2O)$, molar ratio, 1.0, 1.5 and 2.0). In order to investigate the effects of $Mg^{2+}$ and ${SO_4}^{2-}$, compression strength, weight change, lengh expansion of the samples were measured in 10% sodium sulfate ($Na_2SO_4$), 10%, 5% and 2.5% magnesium sulfate ($MgSO_4$), 10% magnesium nitrate ($Mg(NO_3)_2$), 10% [magnesium chloride ($MgCl_2$) + sodium sulfate ($Na_2SO_4$)] and 10% [magnesium nitrate $(Mg(NO_3)_2$ + sodium sulfate ($Na_2SO_4$)] solution, respectively and X-ray diffraction analysis was conducted after each experiment. As a result, when $Mg^{2+}$ and ${SO_4}^{2-}$ coexist, degradation of compressive strength and expansion of the sample were caused by sulfate erosion. It was found that the reaction of $Mg^{2+}$ with Calcium Silicate Hydrate (C-S-H) occurred and $Ca^{2+}$ was produced. Then the Gypsum ($CaSO_4{\cdot}2H_2O$) was formed due to reaction between $Ca^{2+}$ and ${SO_4}^{2-}$, and also Magnesium hydroxide ($Mg(OH)_2$, Brucite) was produced by the reaction between $Mg^{2+}$ and $OH^-$.

Low-Temperatrue Synthesis of Mullite Powders by the Emulsion Technique (MgO-Al2O3-SiO2계 요업원료의 제조 및 소결특성 -에멀젼법에 의한 Mullite분체의 저온합성-)

  • 현상훈;이희수;송승룡
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.361-370
    • /
    • 1989
  • Mullite powders were synthesized from the common solution of aluminum sulfate and sodium silicate solutions by the emulsion-hot kerosene technique. The reaction temperature and mechanism for mullitization and the characteristics of synthesized mullite powders were investigated. The effect of Na components introduced from sodium silicate solution on the physical property and microstructure of sintered mullite was also examined. It was proved that mullites were formed at 75$0^{\circ}C$ through the reaction mechanism of Na2O.2.2SiO2+3.3Al2(SO4)3longrightarrow1.1(3Al2O3.2SiO2)+Na2SO4+8.9SO3. Synthetic mullite powders consisted of the compositiion of 3Al2O3.2SiO2 and showed highly agglomeration of hollow spherical particles of 1${\mu}{\textrm}{m}$ diameter. The density and fracture toughness of sintered mullites were somewhat reduced because of the effect of a very small amount of residual Na components.

  • PDF

The Decomposition of Carbon-dioxide Using the Oxygen Deficient Magnetite (산소 결함 Magnetite를 이용한 이산화탄소의 분해)

  • 김승호;박영구;이승훈
    • Journal of Environmental Health Sciences
    • /
    • v.21 no.2
    • /
    • pp.68-74
    • /
    • 1995
  • The optimum conditions was synthesized for the formation of Magnetite ($Fe_3O_4$) by air bubbling with the suspensions obtained by mixing Ferrous sulfate ($FeSO_4\cdot 7H_2O$) and Sodium Hydroxide (NaOH) solution in various values equivalent ratio($R=2NaOH/FeSO_4$) were studied. The changes of the structure were measured with XRD, $EM and BET. Equivalent ratio R: 0.65 was synthesized Goethite ($\alpha$-FeOOH), which becomes Maghemite ($\gamma=Fe_2O_3$) by dehydration, reduction and oxidation process. At the equivalent ratio over 1 (R>1), Magnetite ($Fe_3O_4$) was synthesized directly. The oxygen-deficient Magnetite ($Fe_3O_{4-\delta}$), which is obtained by flowing $H_2$ gas(100 ml/min) through the synthesis Magnetite at 350$\circ$C for 4 hr. By using it, was researched the decomposition reaction of $CO_2$. $CO_2$ was decomposed nearly 100% in 45 minutes by the oxygen-deficient Magnetite.

  • PDF

Effects of compatibility between PNS Superplasticzer and soluble alkali of cements on performances of concrete (PNS계 고성능 감수제와 시멘트 수용성 알칼리양과의 상용성이 콘크리트 물성에 미치는 영향)

  • Ahn, Tae-ho;Park, Junhui;Sho, Kwangho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.173-177
    • /
    • 2017
  • A polynaphthalenesulfonate (PNS) superplasticizer and its relation to the fluidity of cement paste (w/c = 0.35) has been investigated for three cements at a given dosage of PNS superplasticizer. Chemical properties of three cements were characterized with a XRD, XRF. The additive effects of $Na_2SO_4$ on the fresh concrete with w/c = 0.33 were also estimated by the measurement of compressive strength, slump, air content. The experimental results exhibited that the addition of sodium sulfate 2.6 % to the cement A and C improves slump loss. In case of cement E, the addition of sodium sulfate 1.3 % was effective.

The Effect of the Use of Sodium Hypochlorite and Iron Salts on Sewage Sludge Dewaterability (차아염소산과 철염을 이용한 하수슬러지의 탈수효과)

  • Sung, Il-Wha
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.1
    • /
    • pp.58-63
    • /
    • 2009
  • This study investigated improvement to sludge dewaterability and coagulation for sewage treatment plant sludge by using sodium hypochlorite solution (NaOCl), ferric sulfate [$Fe_2(SO_4)_3$] and zeolite. The specific resistance to filtration(SRF), chloride, pH and turbidity were used to evaluate the sludge dewatering behaviors. The results of study were as follows: By varying the amount of NaOCl added the optimum result in terms of enhancement for pretreatment occurred when 34 mg/l of NaOCl was injected. When the total solids concentration of the sludge was 10,000 mg/l, the optimum ferric sulfate dosage for the sludge dewaterability was 150 mg/l and the corresponding SRF was $1.7{\times}10^7sec^2/g$. It was observed that injecting zeolite into sludge was effective in improving the dewaterability of sludge.

The Strength Properties Activated Granulated Ground Blast Furnace Slag with Aluminum Potassium Sulfate and Sodium Hydroxide (칼륨명반과 수산화나트륨으로 활성화된 고로슬래그 미분말의 강도 특성)

  • Kim, Taw-Wan;Hahm, Hyung-Gil
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.95-102
    • /
    • 2015
  • In this paper, the effects of sodium hydroxide (NaOH) and aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$) dosage on strength properties were investigated. For evaluating the property related to the dosage of alkali activator, sodium hydroxide (NaOH) of 4% (N1 series) and 8% (N2 series) was added to 1~5% (K1~K5) dosage of aluminum potassium sulfate ($AlK(SO_4)_2{\cdot}12H_2O$) and 1% (C1) and 2% (C2) dosage of calcium oxide (CaO). W/B ratio was 0.5 and binder/ fine aggregate ratio was 0.5, respectively. Test result clearly showed that the compressive strength development of alkali-activated slag cement (AASC) mortars were significantly dependent on the dosage of NaOH and $AlK(SO_4)_2{\cdot}12H_2O$. The result of XRD analysis indicated that the main hydration product of $NaOH+AlK (SO_4)_2{\cdot}12H_2O$ activated slag was ettringite and CSH. But at early ages, ettringite and sulfate coated the surface of unhydrated slag grains and inhibited the hydration reaction of slag in high dosage of $NaOH+AlK(SO_4)_2{\cdot}12H_2O$. The $SO_4{^{-2}}$ ions from $AlK(SO_4)_2{\cdot}12H_2O$ reacts with CaO in blast furnace slag or added CaO to form gypsum ($CaSO_4{\cdot}2H_2O$), which reacts with CaO and $Al_2O_3$ to from ettringite in $NaOH+AlK(SO_4)_2{\cdot}12H_2O$ activated slag cement system. Therefore, blast furnace slag can be activated by $NaOH+AlK(SO_4)_2{\cdot}12H_2O$.

Separation of Lanthanum(III) by Selective Precipitation from Sulfuric Acid Solution Containing Iron(III) (황산철(III)용액에서 란타넘(III)의 선택적 침전 분리)

  • Song, Si Jeong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.31-38
    • /
    • 2021
  • To investigate the separation of La(III) from sulfuric acid solutions containing Fe(III), rare earth double salt precipitation experiments were performed by adding sodium sulfate. In this work, the effect of sodium sulfate, Fe(III), and La(III) concentrations; reaction temperature; and time was investigated. The extent of precipitation of La(III) was proportional to the concentrations of Na+ and SO42- in the solution. As the reaction temperature increased to 100 ℃, the extent of precipitation of La(III) increased. The extent of precipitation of Fe(III) decreased with increasing reaction time. The concentration ratio of Fe(III) to La(III) did not have a significant effect on the precipitation of La(III). Our results indicate that it is possible to separate La(III) from a ferric sulfate solution through selective precipitation by adding sodium sulfate.

Effect of low-calcium fly ash on sulfate resistance of cement paste under different exposure conditions

  • Zhang, Wuman;Zhang, Yingchen;Gao, Longxin
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2019
  • Low-calcium fly ash (LCFA) were used to prepare cement/LCFA specimens in this study. The basic physical properties including water demand, fluidity, setting time, soundness and drying shrinkage of cement/LCFA paste were investigated. The effects of curing time, immersion time and wet-dry cycles in 3% $Na_2SO_4$ solution on the compressive strength and the microstructures of specimens were also discussed. The results show that LCFA increases the water demand, setting time, soundness of cement paste samples. 50% and 60% LCFA replacement ratio decrease the drying shrinkage of hardened cement paste. The compressive strength of plain cement specimens decreases at the later immersion stage in 3% $Na_2SO_4$ solution. The addition of LCFA can decrease this strength reduction of cement specimens. For all specimens with LCFA, the compressive strength increases with increasing immersion time. During the wet-dry cycles, the compressive strength of plain cement specimens decreases with increasing wet-dry cycles. However, the pores in the specimens with 30% and 40% LCFA at early ages could be large enough for the crystal of sodium sulfate, which leads to the compressive strength increase with the increase of wet-dry cycles in 3% $Na_2SO_4$ solution. The microstructures of cement/LCFA specimens are in good agreement with the compressive strength.