Browse > Article
http://dx.doi.org/10.4334/JKCI.2017.29.4.415

Effects of Magnesium and Sulfate Ions on the Sulfate Attack Resistance of Alkali-activated Materials  

Park, Kwang-Min (High-tech Construction Materials Center, Korea Conformity Laboratories)
Cho, Young-Keun (High-tech Construction Materials Center, Korea Conformity Laboratories)
Shin, Dong-Cheol (Dept. of Architectural Engineering, Gachon University)
Publication Information
Journal of the Korea Concrete Institute / v.29, no.4, 2017 , pp. 415-424 More about this Journal
Abstract
The purpose of this study is to investigate the effect of sulfate (${SO_4}^{2-}$) and magnesium ($Mg^{2+}$) ions on sulfate resistance of Alkali-activated materials using Fly ash and Ground granulated blast furnace slag (GGBFS). In this research, 30%, 50% and 100% of GGBFS was replaced by sodium silicate modules ($Ms(SiO_2/Na_2O)$, molar ratio, 1.0, 1.5 and 2.0). In order to investigate the effects of $Mg^{2+}$ and ${SO_4}^{2-}$, compression strength, weight change, lengh expansion of the samples were measured in 10% sodium sulfate ($Na_2SO_4$), 10%, 5% and 2.5% magnesium sulfate ($MgSO_4$), 10% magnesium nitrate ($Mg(NO_3)_2$), 10% [magnesium chloride ($MgCl_2$) + sodium sulfate ($Na_2SO_4$)] and 10% [magnesium nitrate $(Mg(NO_3)_2$ + sodium sulfate ($Na_2SO_4$)] solution, respectively and X-ray diffraction analysis was conducted after each experiment. As a result, when $Mg^{2+}$ and ${SO_4}^{2-}$ coexist, degradation of compressive strength and expansion of the sample were caused by sulfate erosion. It was found that the reaction of $Mg^{2+}$ with Calcium Silicate Hydrate (C-S-H) occurred and $Ca^{2+}$ was produced. Then the Gypsum ($CaSO_4{\cdot}2H_2O$) was formed due to reaction between $Ca^{2+}$ and ${SO_4}^{2-}$, and also Magnesium hydroxide ($Mg(OH)_2$, Brucite) was produced by the reaction between $Mg^{2+}$ and $OH^-$.
Keywords
alkali-activated materials; sulfate resistance; ground granulated blast furnace slag; fly ash; magnesium ion;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Richardson, I. G., Brough, A. R., Groves, G. W., and Dobson, C. M., "The Characterization of Hardened Alkali Activated Blast Furnace Slag Pastes and the Nature of the Calcium Silicate Hydrate (C-S-H) Phase", Cement and Concrete Research, Vol. 24, No. 5, 1994, pp. 813-829.   DOI
2 Wang, S. D. and Scrivener, K. L., "Hydration Products of Alkali Activated Slag Cement", Cement and Concrete Research, Vol. 25, No. 3, 1995, pp. 561-571.   DOI
3 Lei, M., Peng, L., Shi, C., and Wang, S., "Experimental Study on the Damage Mechanism of Tunnel Structure Suffering from Sulfate Attack", Tunnelling and Underground Space Technology, Vol. 36, 2013, pp. 5-13.   DOI
4 Shamaa, M. A., Lavaud, S., Divet, L., Nahas, G., and Torrenti, J. M., "Coupling between Mechanical and Transfer Properties and Expansion Due to DEF in a Concrete of a Nuclear Plant", Nuclear Engineering and Design, Vol. 266, 2014, pp. 70-77.   DOI
5 Bae, S. H., Park, J. I., and Lee, K. M., "Influence of Mineral Admixtures on the Resistance to Sulfuric Acid and Sulfate Attack in Concrete", Journal of the Korea Concrete Institute, Vol. 22, No. 2, 2010, pp. 219-228.   DOI
6 Lee, S. T., "Magnesium Sulfate Attack and Deterioration Mode of Metakaolin Blended Cement Matrix", Journal of the Korea Concrete Institute, Vol. 21, No. 1, 2009, pp. 21-27.   DOI
7 Lee, S. T., "Evaluation on the Performance of Silica Fume Blended Cement Matrix Exposed to External Sulfate Attack", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 11, No. 4, 2007, pp. 121-128.
8 Caijun, S. and Yinyu, L., "Investigation on Some Factors Affecting the Characteristics of Alkali-phosphorus Slag Cement", Cement and Concrete Research, Vol. 19, No. 4, 1989, pp. 527-533.   DOI
9 Gruskovnjak, A., Lothenbach, B., Winnefeld, F., Figi, R., Ko, S. C., Adler, M., and Mader, U., "Hydration Mechanisms of Super Sulphated Slag Cement", Cement and Concrete Research, Vol. 38, No. 7, 2008, pp. 983-992.   DOI
10 Park, K. M., Cho, Y. K., and Lee, B. C., "Sulfate Resistance of Alkali-Activated Materials Mortar", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 20, No. 2, 2016, pp. 94-101.   DOI
11 Park, K. M., Cho, Y. K., Ra, J. M., and Kim, H. S., "Effects of Magnesium on Sulfate Resistance of Alkali-activated Materials", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 21, No. 1, 2017, pp. 109-116.
12 Al-Amoudi, O. S. B., "Sulfate Attack and Reinforcement Corrosion in Plain and Blended Cements Exposed to Sulfate Environments", Building and Environment, Vol. 33, No. 1, 1998, pp. 53-61.   DOI
13 Santhanam, M., Cohen, M. D., and Olek, J., "Mechanism of Sulfate Attack : A Fresh Look Part 1 : Summary of Experimental Results," Cement and Concrete Research, Vol. 32, No. 6, 2002, pp. 915-921.   DOI
14 Nath, P. and Sarker, P., "Effect of GGBFS on Setting, Workability and Early Strength Properties of Fly Ash Geopolymer Concrete Cured in Ambient Condition", Construction and Building Materials, Vol. 66, No. 15, 2014, pp. 163-171.   DOI
15 Arbi1, K., Nedeljkovicl, M., Zuo, Y., Grunewald, S., Keulen, A., and Ye, G., "Experimental Study on Workability of Alkali Activated Fly Ash and Slag-based Geopolymer Concretes", Geopolymers : The route to eliminate waste and emissions in ceramic and cement manufacturing, An ECI Conference, Austria, 2015, pp. 75-78.
16 Davidovits, J., "Geopolymer Cement to Minimize Carbondioxide Greenhouse-warming", Ceramic Transactions, Vol. 37, 1993, pp. 165-182.
17 Shi, C., Pavel V. K., and Della R., Alkali-Activated Cements and Concretes, Taylor & Francis Group, 2006, pp. 150-156.
18 Brough, A. R. and Atkinson, A., "Sodium Silicate-based, Alkali-activated Slag Mortars - Part I. Strength, Hydration and Microstructure", Cement and Concrete Research, Vol. 32, No. 6, 2002, pp. 865-879.   DOI
19 ASTM C 1012, Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to Sulfate Solution, American Society for Testing and Materials, ASTM International, USA, 2007, pp. 1-6.
20 Monteny, J., Vincke, E., Beeldens, A., Taerwe, L., Van Gemert, D., and Verstraete, W., "Chemical, Microbiological, and in Situ Test Methods for Biogenic Sulfuric Acid Corrosion of Concrete", Cement and Concrete Research, Vol. 30, No. 4, 2000, pp. 623-634.   DOI
21 Van Deventer, J. S. J., Provis, J. L., Duxson, P., and Lukey, G. G., "Reaction Mechanisms in the Geopolymeric Conversion of Inorganic Waste to Useful Products", Journal of Hazardous Materials, Vol. 139, No. 3, 2007, pp. 506-513.   DOI
22 Lothenbach, B. and Gruskovnjak, A., "Hydration of Alkaliactivated Slag: Thermodynamic Modelling", Advances in Cement Research, Vol. 19, No. 2, 2007, pp. 81-92.   DOI