• Title/Summary/Keyword: Sodium reduction

Search Result 722, Processing Time 0.029 seconds

Localization Development of On-Site High Sodium Hypochlorite Generation (고농도 차아염소산나트륨 발생장치 국산화 개발)

  • Kim, Jung Sik;Shin, Hyun Su;Lee, Eun Kyoung;Jung, Bong Ik
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.83-90
    • /
    • 2013
  • The purpose of this study is to replace existing liquid chlorine with localization of on-site high (12%) sodium hypochlorite generation system. On-site high (12%) sodium hypochlorite generation system is higher the current efficiency of 38.7%, 54.6% reduction of salt consumption, and 97.3% lower rate of chlorate than on-site low (0.8%) sodium hypochlorite generation system.

INTERPARTICLE POTENTIAL OF 10 NANOMETER TITANIUM NANOPARTICLES IN LIQUID SODIUM: THEORETICAL APPROACH

  • KIM, SOO JAE;PARK, GUNYEOP;PARK, HYUN SUN;KIM, MOO HWAN;BAEK, JEHYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.662-668
    • /
    • 2015
  • A suspension of titanium nanoparticles (Ti NPs) in liquid sodium (Na) has been proposed as a method to mitigate the violent sodium-water reaction (SWR). The interparticle potential between Ti NPs in liquid Na may play a significant role in the agglomeration of NPs on the reaction surface and in the bulk liquid Na, since the potential contributes to a reduction in the long-term dispersion stability. For the effective control of the SWR with NPs, a physical understanding of the molecular dynamics of NPs in liquid Na is key. Therefore in this study, the nonretarded Van der Waals model and the solvation potential model are employed to analyze the interparticle potential. The ab initio calculation reveals that a strong repulsive force driven by the solvation potential exceeds the interparticle attraction and predicts the agglomeration energy required for two 10-nm Ti NPs to be $4{\times}10^{-17}J$. The collision theory suggests that Ti NPs can be effective suppressors of the SWR due to the high energy barrier that prevents significant agglomeration of Ti NPs in quiescent liquid Na.

Reduction of N-Arylpyridinium Compounds by Sodium Borohydride and Dithionite: Regioselectivity and Isomerization of Reduction Products

  • Koh, Park, Kwang-Hee;Han, Du-Hee;Shin, Dae-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.201-204
    • /
    • 1986
  • Reduction of N-arylpyridinium compounds by $NaBH_4$ gave mixtures of the corresponding 1,2-dihydropyridine(major) and 1,4-dihydropyridine(minor), whereas similar reduction by $Na_2S_2O_4$ produced 1,4-dihydropyridines regioselectively. The proportion of 1,4-isomer in the product by $NaBH_4$ reduction appeared to increase with the electron-donating ability of N-aryl groups. When the N-aryl group is p-methylphenyl, p-ethylphenyl or p-methoxyphenyl, the 1,2-dihydropyridines in ethanol-water (4:1) solutions isomerized to the corresponding 1,4-dihydropyridines. N-(p-methylphenyl)-1,2-dihydropyridine and N-(p-ethylphenyl)-1,2-dihydropyridine in solid state also isomerized to the corresponding 1,4-dihydropyridines. The different behaviors of reduction among N-arylpyridiniums and isomerization of the reduction products depending on the substituent in N-aryl group were explained in terms of difference in the electronic effects of the substituents.

Effects of lead on ATPase activity in the sciatic nerve of Sprague-Dawley rat (랫드의 대퇴 신경중 ATPase 효소활성에 미치는 납의 영향)

  • 정명규
    • Environmental Analysis Health and Toxicology
    • /
    • v.9 no.1_2
    • /
    • pp.1-8
    • /
    • 1994
  • Nerve conduction impairment in lead neuropathy has been empirically linked to altered nerve myo-inositol metabolism. In most cases of neuropathy, abnormal myo-inositol metabolism is associated with abnormal $Na^+/K^+$ATPase provides a potential mechanism to relate defects of the myo-inositol metabolism in the peripheral nerve treated with lead. Therefore, the effect of lead on the rat sciatic nerve $Na^+/K^+$ATPase and other ATPase of sciatic nerve was studied. ATPase activity was measured enzymatically in sciatic nerve homogenates from 2-wk lead treated neuropathy rats and age-mached controls administered myo-inositol. $Na^+/K^+$ATPase components were assessed by ouabain inhibition or the omission of sodium and potassium ions. Lead reduced 50% reduction in the $Na^+/K^+$ATPase activity in homogenates of sciatic nerve. The 50% reduction in the $Na^+/K^+$ ATPase activity was selectively prevented by myo-inositol treatment. This study suggests that the toxic mechanism of the lead on peripheral nerve may be through reduction in $Na^+/K^+$ATPase activity which has been linked to axonal transport slowing in the rat model of lead neuropathy, via direct changes by the perturbation of the intracelluar sodium or potasium level.

  • PDF

Studies on the Rapid Discrimination of Yellow Pigments Colored on Yellow Croakers and Natural Yellow Pigment of Croakers (참조기의 천연색소와 인위적으로 착색된 황색색소류 판별법에 관한 연구)

  • Kim, Hee-Yun;Hong, Jin-Hwan;Kim, Dong-Sul;Han, Sang-Bae;Lee, Eun-Ju;Lee, Jeung-Seung;Kang, Kil-Jin;Chung, Hyung-Wook;Song, Kyung-Hee;Park, Hye-Kyung;Park, Jong-Seok;Kwon, Yong-Kwan;Chin, Myung-Shik;Park, Hee-Ok;Oh, Sae-Hwa;Shin, Il-Shik;Lee, Chang-Kook;Park, Hee-Yul;Ha, Sang-Chul;Jo, Jae-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.977-983
    • /
    • 2002
  • This study was performed to establish the precise and rapid method to distinguish croakers through the pigment analysis of colored imported white croakers for adultration. We surveyed the coloring behaviors, extraction test by water and organic solvent and using pigments such as targeting, curcumine, and azo dye products. The pigment of yellow croaker is not stained on wet cloth or tissue which is rubbed on epidermis of yellow croaker and was not eluted in water extraction test, while adulterated pigments were easily extracted by water and acetone, but edible diluted yellow, Yellow No. 4 and Yellow No. 5 were not extracted. Reactive pigment was detected easily by extraction with water and dispersed pigment was also detected by extraction test. As a result of discoloring characteristics of carotene having similar structure to yellow croaker and azo dye by oxidation and reduction, azo dyes were not discolored by oxidation with sodium percarbonate or peracetic acid but that were discolored by oxidation with Fenton reagent after 1hr and by hypochlorite promptly. On the other hand, carotenes were not discolored by sodium precarbonate and Fenton reagent but discolored by sodium hypochlorite after 2 hr and by peracetic acid promptly. Azo dyes were discolored by reduction with sodium hydrosulfite and sodium carbonate but carotenes were not discolored by these reagents. This discoloring test was applicable to detect adulterated pigments and other marine product.