• 제목/요약/키워드: Sodium nitroprusside (SNP)

검색결과 136건 처리시간 0.023초

Involvement of nitric oxide-induced NADPH oxidase in adventitious root growth and antioxidant defense in Panax ginseng

  • Tewari, Rajesh Kumar;Kim, Soohyun;Hahn, Eun-Joo;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • 제2권2호
    • /
    • pp.113-122
    • /
    • 2008
  • Nitric oxide (NO) affects the growth and development of plants and also affects plant responses to various stresses. Because NO induces root differentiation, we examined whether or not it is involved in increased ROS generation. Treatments with sodium nitroprusside (SNP), an NO donor, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO), a specific NO scavenger, and $N{\omega}-nitro-{\text\tiny{L}}-arginine$ methyl ester hydrochloride (${\text\tiny{L}}-NAME$), an NO synthase (NOS) inhibitor, revealed that NO is involved in the adventitious root growth of mountain ginseng. Supply of an NO donor, SNP, activates NADPH oxidase activity, resulting in increased generation of $O_2{^{{\cdot}-}}$, which subsequently induces growth of adventitious roots. Moreover, treatment with diphenyliodonium chloride (DPI), an NADPH oxidase inhibitor, individually or with SNP, inhibited root growth, NADPH oxidase activity, and $O_2{^{{\cdot}-}}$ anion generation. Supply of the NO donor, SNP, did not induce any notable isoforms of enzymes; it did, however, increase the activity of pre-existing bands of NADPH oxidase, superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione reductase. Enhanced activity of antioxidant enzymes induced by SNP supply seems to be responsible for a low level of $H_2O_2$ in the adventitious roots of mountain ginseng. It was therefore concluded that NO-induced generation of $O_2{^{{\cdot}-}}$ by NADPH oxidase seems to have a role in adventitious root growth of mountain ginseng. The possible mechanism of NO involvement in $O_2{^{{\cdot}-}}$ generation through NADPH oxidase and subsequent root growth is discussed.

Dual control of the vestibulosympathetic reflex following hypotension in rats

  • Park, Sang Eon;Jin, Yuan-Zhe;Park, Byung Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.675-686
    • /
    • 2017
  • Orthostatic hypotension (OH) is associated with symptoms including headache, dizziness, and syncope. The incidence of OH increases with age. Attenuation of the vestibulosympathetic reflex (VSR) is also associated with an increased incidence of OH. In order to understand the pathophysiology of OH, we investigated the physiological characteristics of the VSR in the disorder. We applied sodium nitroprusside (SNP) to conscious rats with sinoaortic denervation in order to induce hypotension. Expression of pERK in the intermediolateral cell column (IMC) of the T4~7 thoracic spinal regions, blood epinephrine levels, and blood pressure were evaluated following the administration of glutamate and/or SNP. SNP-induced hypotension led to increased pERK expression in the medial vestibular nucleus (MVN), rostral ventrolateral medullary nucleus (RVLM) and the IMC, as well as increased blood epinephrine levels. We co-administered either a glutamate receptor agonist or a glutamate receptor antagonist to the MVN or the RVLM. The administration of the glutamate receptor agonists, AMPA or NMDA, to the MVN or RVLM led to elevated blood pressure, increased pERK expression in the IMC, and increased blood epinephrine levels. Administration of the glutamate receptor antagonists, CNQX or MK801, to the MVN or RVLM attenuated the increased pERK expression and blood epinephrine levels caused by SNP-induced hypotension. These results suggest that two components of the pathway which maintains blood pressure are involved in the VSR induced by SNP. These are the neurogenic control of blood pressure via the RVLM and the humoral control of blood pressure via epinephrine release from the adrenal medulla.

Involvement of Caspases and Bcl-2 Family in Nitric Oxide-Induced Apoptosis of Rat PC12 Cells

  • Jeong, Yeon-Jin;Jung, Ji-Yeon;Lee, Jin-Ha;Cho, Jin-Hyoung;Lee, Guem-Sug;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권6호
    • /
    • pp.329-335
    • /
    • 2006
  • This study was aimed to investigate the nitric oxide (NO)-induced cytotoxic mechanism in PC12 cells. Sodium nitroprusside (SNP), an NO donor, decreased the viability of PC12 cells in dose-and time-dependent manners. SNP enhanced the production of reactive oxygen species (ROS), and gave rise to apoptotic morphological changes including cell shrinkage, chromatin condensation, and DNA fragmentation. Expression of Bax was not affected, whereas Bcl-2 was downregulated in SNP-treated PC12 cells. SNP augmented the release of cytochrome c from mitochondria into cytosol and enhanced caspase -8, -9, and -3 activities. SNP upregulated both Fas and Fas-L, which are known to be components of death receptor assembly. These results suggest that NO induces apoptosis of PC12 cells through both mitochondria-and death receptor-mediated pathways mediated by ROS and Bcl-2 family.

Antioxidative Effects of Delphinidin under in vitro and Cellular System

  • Noh, Jeong-Sook;Cho, Yun-Ju;Kim, Boh-Kyung;Park, Kun-Young;Cho, Eun-Ju
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.167-171
    • /
    • 2009
  • This study examined the antioxidative activity of delphinidin, a kind of anthocyanidin from eggplant. Cellular protective potential from oxidative damage by nitric oxide (NO), superoxide anion ($O_2^-$), and peroxynitrite ($ONOO^-$) using epithelial cell line LLC-PK1 cell as well as in vitro radical scavenging effects were investigated. Delphinidin showed strong in vitro radical scavenging effects against NO, $O_2^-$, and hydroxyl radical (${\cdot}OH$) in dose-dependent manners. In addition, delphinidin increased cell viability in LLC-PK1 cells in a concentration-dependent manner when viability was reduced by $ONOO^-$-induced oxidative damage. To elucidate the protective mechanisms of delphinidin from $ONOO^-$, sodium nitroprusside (SNP), and pyrogallol were also employed to generate NO and $O_2^-$, respectively. The treatment of delphinidin recovered reductions in cell viability caused by SNP and pyrogallol, indicating that delphinidin can attenuate oxidative stress induced by NO and $O_2^-$. The present study suggests that delphinidin is a promising anti oxidative agent.

Erectogenic Effect of the Selective Phosphodiesterase Type 5 Inhibitor DA-8159

  • Oh, Tae-Young;Kang, Kyung-Koo;Ahn, Byoung-Ok;Yoo, Moo-hi;Kim, Won-Bae
    • Archives of Pharmacal Research
    • /
    • 제23권5호
    • /
    • pp.471-476
    • /
    • 2000
  • DA-8159, a new phosphodiesterase 5 inhibitor, was assessed for its erectogenic potential by a penile erection test in rats, the relaxation of isolated rabbit corpus cavernosum (CC), and estimation of the intracavernous pressure (ICP) in the anesthetized dog. Oral administration of DA-8159 (0.3 to 1 ${\mu}g/kg$ ) increased the number of erections in rats with increasing dosage, with the highest penile erection index at 10 ${\mu}g/kg$ DA-8159 induced the relaxation of phenylephrine (PHE)-induced contractions in the rabbit CC and decreased the $IC_{50}$ of the nitric oxide donor sodium nitroprusside (SNP) in a dose-dependent fashion. In pentobarbital-anesthetized dogs, the intravenous administration of DA-8159 (1~300 ${\mu}g/kg$ ) potentiated the increase in ICP induced by the intracavernosal SNP in a dose-related manner. These findings suggest that DA-8159 has significant therapeutic potential in the treatment of erectile dysfunction.

  • PDF

Nitric Oxide-induced Protein S-nitrosylation Causes Mitochondrial Dysfunction and Accelerates Post-ovulatory Aging of Oocytes in Cattle

  • Niu, Ying-Jie;Zhou, Dongjie;Zhou, Wenjun;Nie, Zheng-Wen;Kim, Ju-Yeon;Oh, YoungJin;Lee, So-Rim;Cui, Xiang-Shun
    • 한국동물생명공학회지
    • /
    • 제35권1호
    • /
    • pp.102-111
    • /
    • 2020
  • Nitric oxide (NO)-induced protein S-nitrosylation triggers mitochondrial dysfunction and was related to cell senescence. However, the exact mechanism of these damages is not clear. In the present study, to investigate the relationship between in vitro aging and NO-induced protein S-nitrosylation, oocytes were treated with sodium nitroprusside dihydrate (SNP), and the resultant S-nitrosylated proteins were detected through biotin-switch assay. The results showed that levels of protein S-nitroso thiols (SNO)s and expression of S-nitrosoglutathione reductase (GSNOR) increased, while activity and function of mitochondria were impaired during oocyte aging. Addition of SNP, a NO donor, to the oocyte culture led to accelerated oocyte aging, increased mitochondrial dysfunction and damage, apoptosis, ATP deficiency, and enhanced ROS production. These results suggested that the increased NO signal during oocyte aging in vitro, accelerated oocyte degradation due to increased protein S-nitrosylation, and ROS-related redox signaling.

Alteration of Nitric Oxide Synthase and Guanylyl Cyclase Activity in Rats with Ischemia/Reperfusion Renal Injury

  • Bae, Eun-Hui;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권6호
    • /
    • pp.337-341
    • /
    • 2006
  • The present study was designed to investigate the protein expression of nitric oxide synthase (NOS) and guanylyl cyclase (GC) activity in ischemia/perfusion (I/R) renal injury in rats. Renal I/R injury was experimentally induced by clamping the both renal pedicle for 40 min in Sprague-Dawley male rats. The renal expression of NOS isoforms was determined by Western blot analysis, and the activity of guanylyl cyclase was determined by the amount of guanosine 3', 5'-cyclic monophosphate (cGMP) formed in response to sodium nitroprusside (SNP), NO donor. I/R injury resulted in renal failure associated with decreased urine osmolality. The expression of inducible NOS (iNOS) was increased in I/R injury rats compared with controls, while endothelial NOS (eNOS) and neuronal NOS (nNOS) expression was decreased. The urinary excretion of NO metabolites was decreased in I/R injury rats. The cGMP production provoked by SNP was decreased in the papilla, but not in glomerulus. These results indicate an altered regulation of NOS expression and guanylyl cyclase activity in I/R-induced nephropathy.

Effects of a New Selective Phosphodiesterase Type 5 Inhibitor, KJH-1002, on the Relaxation of Rabbit Corpus Cavernosum Tissue

  • Cho, Eun-Young;Chung, Sung-Hyun;Kim, Joong-Hyup;Kim, Dong-Hyun;Jin, Cang-Bae
    • Biomolecules & Therapeutics
    • /
    • 제11권4호
    • /
    • pp.232-237
    • /
    • 2003
  • The present study examined functional effects of a new selective phosphodiesterase type 5 inhibitor, 1-[4-ethoxy-3-(6,7-dihydro-1-methyl-7-thioxo-3-propyl-1H-pyrazolo[ 4,3]pyrimidin-5-yl)phenylsulphonyl]-4-methyl piperazine (KJH-1002), in the isolated rabbit corpus cavernosum (RCC). Relaxing effects of KJH-1002 were also compared with those of sildenafil, which is currently used as an oral therapy for penile erectile dysfunction. In the isolated RCC precontracted with phenylephrine, both KJH-1002 and sildenafil in the concentration range of 1 to 1000 nM, produced a comparable potentiation of the electical field stimulation-induced relaxation in a concentration-dependent manner. In the sodium nitroprusside (SNP)-induced relaxation, the $IC_{50}$/ values, concentrations of SNP required to produce a 50% relaxation of the phenylephrine-induced contraction, were significantly decreased to the similar extent by treatments with KJH-1002 and sildenafil. The results suggest that a new selective phosphodiesterase type 5 inhibitor, KJH-1002, has an augmentative effect on penile erection comparable to that of sildenafil and can be useful for the treatment of erectile dysfunction.

Effect of Nitric Oxide on the Sinusoidal Uptake of Organic Cations and Anions by Isolated Hepatocytes

  • Song, Im-Sook;Lee, In-Kyoung;Chung, Suk-Jae;Kim, Sang-Geon;Lee, Myung-Gull;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.984-988
    • /
    • 2002
  • The issue of whether or not the presence NOx (NO and oxidized metabolites) in the hepatocytes at pathological levels affects the functional activity of transport systems within the sinusoidal membrane was investigated. For this purpose, the effect of the pretreatment of isolated hepatocytes with sodium nitroprusside (SNP), a spontaneous NO donor, on the sinusoidal uptake of tributylmethylammonium (TBuMA) and triethylmethyl ammonium (TEMA), representative substrates of the organic cation transporter (OCT), and taurocholate, a representative substrate of the $Na^+$/taurocholate cotransporting polypeptide (NTCP), was measured. The uptake of TBuMA and TEMA was not affected by the pretreatment, as demonstrated by the nearly identical kinetic parameters for the uptake ($i.e., V_{max}, K_{m} and CL_{linear}$). The uptake of mannitol into hepatocytes was not affected, demonstrating that the membrane integrity remained constant, irregardless of the SNP prutreatment. On the contrary, the uptake of taurocholate was significantly inhibited by the pretreatment, resulting in a significant decrease in V_{max}$, thus providing a clear demonstration that NOx preferentially affects the function of NTCP rather than OCT on the sinusoidal membrane. A direct interaction between NOx and NTCP or a decrease in $Na^+/K^+$ ATPase activity as the result of SNP pretreatment might be responsible for this selective effect of NOx.

Additive Role of the Vestibular End Organ and Baroreceptors on the Regulation of Blood Pressure in Rats

  • Lan, Yan;Yang, Yan-Zhao;Jiang, Xian;Li, Li-Wei;Jin, Guang-Shi;Kim, Min Sun;Park, Byung Rim;Jin, Yuan-Zhe
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제17권4호
    • /
    • pp.367-373
    • /
    • 2013
  • Contribution of the vestibular end organ to regulation of arterial pressure was quantitatively compared with the role of baroreceptors in terms of baroreflex sensitivity and c-Fos protein expression in the rostral ventrolateral medulla (RVLM). Baroreflex sensitivity and c-Fos protein expression in the RVLM were measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or baroreceptor unloading. BL attenuated baroreflex sensitivity during intravenous infusion of sodium nitroprusside (SNP), but did not significantly affect the sensitivity following infusion of phenylephrine (PE). Baroreflex sensitivity became positive following sinoaortic denervation (SAD) during infusion of PE and attenuated sensitivity during infusion of SNP. Baroreflex sensitivity also became positive following double ablation (BL+SAD) during infusion of PE, and attenuated sensitivity during infusion of SNP. c-Fos protein expression increased significantly in the RVLM in the sham group after SNP administration. However, the BL, SAD, and SAD+BL groups showed significant decreases in c-Fos protein expression compared with that in the sham group. The SAD group showed more reduced c-Fos protein expression than that in the BL group, and the SAD+BL group showed less expression than that in the SAD group. These results suggest that the vestibular system cooperates with baroreceptors to maintain arterial pressure during hypotension but that baroreceptors regulate arterial pressure during both hypotension and hypertension. Additionally, afferent signals for maintaining blood pressure from the vestibular end organs and the baroreceptors may be integrated in the RVLM.