• Title/Summary/Keyword: Sodium ion selective electrode

Search Result 17, Processing Time 0.022 seconds

Sodium Ion-Selective Membrane Electrode Based on Dibenzopyridino-18-Crown-6

  • Tavakkoli, Nahid
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1474-1476
    • /
    • 2004
  • A sodium ion- selective electrode based on dibenzopyridino-18-crown-6 as membrane carrier was successfully prepared. The electrode exhibits a Nernstian response for $Na^+$ ions within the concentration range of $1.0\;{\times}\;10^{-4}-1.0\;{\times}\;10^{-1}$ M. The response time of the sensor is 20 s. The sodium ion-selective electrode exhibited comparatively good selectivities with respect to alkali, alkaline earth and some transition metal ions.

Pilymeric Membrane Sodium Ion-Selective Electrodes Based on Calix[4}arene Triesters

  • Kim, Yun Deok;Jeong, Hae Sang;Gang, Seong Ok;Nam, Gye Cheon;Jeon, Seung Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.405-408
    • /
    • 2001
  • New lipophilic triesters of calix[4]arene and calix[4]quinone are investigated as sodium ion-selective ionophores in poly(vinyl chloride) membrane electrodes. For an ion selective electrode based on calix[4]arene triester I, the linear response is 1 ${\times}$10-3.5 to 1 ${\times}$ 10-1 M of Na+ concentrations. The selectivity coefficients for sodium ion over alkali metal and ammonium ions are determined. The detection limit (logaNa+ = -4.50) and the selectivity coefficient (logKNa+,K+pot = -1.86) are obtained for polymeric membrane electrode containing calix[4]arene triester I.

Silicone Rubber Blended with Polyurethane as the Matrix for Ion-Selective Membrane Electrodes

  • Lee, Hyun Jung;Rho, Kyung Lae;Kim, Chang Yong;Oh, Bong Kyun;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.623-630
    • /
    • 1995
  • Silicone rubber-based sodium-selective membranes are developed for solid-state ion sensors. It was shown that the potetiometric performance of SR-based membranes are greatly dependent on the type of neutral carriers employed; among the three ionophores, N,N,N',N'-tetracyclohexyl-1,2-phenylenedioxydiacetamide (ETH 2120), bis[(12-crown-4)methyl]dodecylmethylmalonate (D12C4DMM) and monensin methyl ester (MME), examined, only ETH 2120 was compatible with the SR-based matrix. Addition of about 20 wt% plasticizer to the SR-based matrix provided the resulting membranes with potentiometric properties essentially equivalent to those of the corresponding PVC-based membranes. Owing to the strong adhesive strength of SR-based membranes, the CWEs coated \vith those membranes exhibited long lifetime with conventional electrode-like performance. Blending of PU into the SR matrix increased the lifetime of CWEs from two weeks to one month.

  • PDF

Hg(II) ion- Selective Electrodes with Neutral Carriers of Macrocycles (거대고리 중성 운반체를 갖는 Hg(II)이온 선택성 전극)

  • 정오진
    • Journal of Environmental Science International
    • /
    • v.5 no.2
    • /
    • pp.211-220
    • /
    • 1996
  • New thin-and diselena-crown ethers containing two suffer and selenium donor atoms have been prepared. And then, mercury ($Hg^{2+}$) ion-selective electrodes with PVC-plasticizer (STPB) based on some macrocycles as neutral carriers were also made. The electrochemical selectivities for various ions, and the effects for macrocycles, matrix of membranes, ratio of plasticizer to macrowcles, concentration and pH of test solution were investigated on the $Hg^{2+}$ ion-selective electrodes. The 1, 10-diselena-18-crown-6-PVC-STPB (sodium tetraphenylborate) exhibited good linear responses of ${28.2}\pm{0.6}$ decade-1 for $Hg^{2+}$ ion in the conientration ranges of $10^{-2}~10^{-6}$ M $Hg^{2+}$ ion. This electrode exhibited comparatively good selectivities for $Hg^{2+}$ ion in comparison with alkali and alkaline earth metal ions, some heavy metal ions and rare earth metal ion in the range of pH 2.5~6.0. In addition, this electrode was applied as a sensor in the titration of $Hg^{2+}$ ion with $1^-$ ion in water.

  • PDF

Lead-Selective Poly(vinyl chloride) Membrane Electrode Based on 1-Phenyl-2-(2-quinolyl)-1,2-dioxo-2-(4-bromo) phenylhydrazone

  • Zare, Hamid Reza;Ardakani, Mahammad Mazloum;Nasirizadeh, Navid;Safari, Javad
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.51-56
    • /
    • 2005
  • A PVC membrane electrode for lead ion based on 1-phenyl-2-(2-quinolyl)-1,2-dioxo-2-(4-bromo) phenylhydrazone (PQDBP) as ionophore was demonstrated. The optimum composition of the membrane was 30 wt% poly(vinyl chloride), 60 wt% dibutyl phthalate as a plasticizer, 4 wt% ionophore and 6 wt% sodium tetraphenylborate as additive. The electrode exhibits a Nernstian response (28.7 mV decade$^{-1}$) for Pb$^{2+}$ over a wide concentration range (1.0 ${\times}$ 10$^{-1}$ to 1 ${\times}$ 10$^{-6}$ M) with a detection limit of 6.0 ${\times}$ 10$^{-7}$ M. This sensor has a short response time and can be used for at least 2 months without any divergence in potentials. The proposed electrode could be used in a pH range of 3.0-6.0 and revealed good selectivities for Pb$^{+2}$ over a wide variety of other metal ions. It was successfully applied as an indicator electrode for the potentiometric titration of lead ion with potassium chromate and for the direct determination of lead in mine.

Synthesis of a New Hexadendates Schiff's Base and Its Application in the Fabrication of a Highly Selective Mercury(II) Sensor

  • Ganjali, M.R.;Norouzi, P.;Alizadeh, T.;Salavati-Niasari, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.68-72
    • /
    • 2007
  • A new PVC membrane potentiometric sensor that is highly selective to Hg2+ ions was prepared, using bis(2-hydroxybenzophenone) butane-2,3-dihydrazone (HBBD) as an excellent hexadendates neutral carrier. The sensor works satisfactorily in the concentration range of 1.0 × 10-6 to 1.0 × 10-1 mol L-1 (detection limit 4 × 10-7 mol L-1) with a Nernstian slope of 29.7 mV per decade. This electrode showed a fast response time (~8 s) and was used for at least 12 weeks without any divergence. The sensor exhibits good Hg2+ selectivity for a broad range of common alkali, alkaline earth, transition and heavy metal ions (lithium, sodium, potassium, magnesium, calcium, copper, nickel, cobalt, zinc, cadmium, lead and lanthanum). The electrode response is pH independent in the range of 1.5-4.0. Furthermore, the developed sensor was successfully used as an indicator electrode in the potentiometric titration of mercury ions with potassium iodide and the direct determination of mercury in some binary and ternary mixtures.

Determination of Complex Formation Constant of Sodium-Selective Ionophores in Solvent Polymeric Membranes (용매 고분자막 상에 고정된 나트륨 이온선택성 물질의 착물형성상수 결정)

  • Kang, Tae Young;Kim, Sung Bae;Oh, Hyon Joon;Han, Sang Hyun;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.466-473
    • /
    • 2000
  • The complex formation constants (${\beta}_{MLn}$) of potassium and various sodium-selective neutral carriers in solvent polymeric membranes have been determined using solvent polymeric membrane-based optodes and ion-selective electrodes (ISEs). Two different types of PVC-based membranes containing the H^+selective chromoionophore (ETH 5294) with and without a sodium ionophore (4-tert-bntylcalix[4]arenetetraacetic acid tetraethyl ester, ETH 2120, bis[(12-crown-4)methyl] dodecylmethylmalonate or monensin methyl ester) were prepared and their optical responses to either the changes in alkali metal cation (e.g., sodium and potassium) concentrations at a fixed pH (0.05 M Tris-HCl, pH 7.2) or varying pH at a fixed alkali metal cation concentration (0.1 M) were measured. The same type of membranes were also mounted in conventional electrode body and their potentiometric responses to varying pH at a fixed alkali metal cation concentration (0.1 M) were measured. The complex formation constants of the ligand could be calculated from the calibration plots of the relative absorbance vs. the activity ratios of cation and proton ($a_{M^+}/a_{H^+}$) and of the emf vs. pH. It was confirmed that the ratio values of the complex formation constants for the primary and interfering ions are closely related to the experimental selectivity coefficients of ISEs.

  • PDF

Effect of Surfactants on the Electrochemical Performance of Cation-Selective Membrane Electrodes

  • Oh, Hyun-Joon;Cha, Geun-Sig;Nam, Hak-hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • We examined the effect of polyether-type nonionic surfactants (Brij 35, Triton X-100, Tween 20 and Tween 80) on the potentiometric properties of sodium-, potassium- and calcium-selective membranes which are prepared with widely used ionophores and four kinds of polymer matrices [poly(vinyl chloride) (PVC), polyurethane (PU), PVC/PU blend, and silicone rubber (SR)]. It was found that the PVC-based membranes, which provide the best performance among all other matrix-based membranes in the absence of nonionic surfactants, exhibited larger change in their potentiometric properties when nonionic surfactants are added to the sample solution. On the other hand, the sodium-selective SR-based membrane with calix[4]arene, potassium-selective PVC/PU- or SR-based membrane with valinomycin, and the calcium-selective SR-based membrane with ETH 1001 provide almost identical analytical performance in the presence and absence of Tween 20 or Tween 80 surfactants. The origin of nonionic surfactants effect was also investigated by interpreting the experimental results obtained with various matrices and ionophores. The results suggest that the nonionic surfactant extracted into the membrane phase unselectively form complexes with the primary and interfering ions, resulting in increased background potential and lower binding ability for the ionophore. Such effects should result in deteriorated detection limits, reduced response slopes and lower selectivity for the primary ions.

The Change of Interactions of Chitosan/Sodium Dodecyl Sulfate in the Presence of Electrolytes (전해질 첨가에 따른 키토산/Sodium Dodecyl Sulfate 상호작용의 변화)

  • 배현숙;강인숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.5
    • /
    • pp.523-523
    • /
    • 2003
  • The change of interactions of anionic surfactants, sodium dodecyl sulfate(SDS) and sodium tetradecyl sulfate(575) in the presence of electrolytes, to the chitosan-based polyelectrolyte(sol'n and gel phase) were studied. The chitosan gel used in this study were crosslinked with epichlorohydrin(ECH). Binding isotherms were determined by potentiometric technique using a surfactant ion selective solid-state electrode and the results were represented by using the sequence generating function(SGF) method. The results of binding isotherm were shown comparatively high cooperativity. The addition of electrolytes in the chitosan/SDS system resulted in a shift of the binding to higher free surfactant concentration because of screen effect by the electrolytes. Degree of binding of chitosan gel was higher than that of chitosan sol'n. And also a conformational phase transition of the chitosan gel in the presence of electrolytes has been investigated.

The Change of Interactions of Chitosan/Sodium Dodecyl Sulfate in the Presence of Electrolytes (전해질 첨가에 따른 키토산/Sodium Dodecyl Sulfate 상호작용의 변화)

  • 배현숙;강인숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.5
    • /
    • pp.524-532
    • /
    • 2003
  • The change of interactions of anionic surfactants, sodium dodecyl sulfate(SDS) and sodium tetradecyl sulfate(575) in the presence of electrolytes, to the chitosan-based polyelectrolyte(sol'n and gel phase) were studied. The chitosan gel used in this study were crosslinked with epichlorohydrin(ECH). Binding isotherms were determined by potentiometric technique using a surfactant ion selective solid-state electrode and the results were represented by using the sequence generating function(SGF) method. The results of binding isotherm were shown comparatively high cooperativity. The addition of electrolytes in the chitosan/SDS system resulted in a shift of the binding to higher free surfactant concentration because of screen effect by the electrolytes. Degree of binding of chitosan gel was higher than that of chitosan sol'n. And also a conformational phase transition of the chitosan gel in the presence of electrolytes has been investigated.