Kim, Soo Hwa;Bae, Dong-Sik;Kim, Chang-Sam;Lee, June Gunn
Journal of the Korean Ceramic Society
/
v.53
no.3
/
pp.282-287
/
2016
This study involves enhancing the performance of the $Na(Li,Ti)O_2$ system as an Na-ion battery anode with the addition of Mg, which partially replaces Li ions. We perform both computational and experimental approaches to achieve a higher reversible capacity and a faster transport of Na ions for the devised system. Computational results indicate that the $Na(Li,Mg,Ti)O_2$ system can provide a lower-barrier path for Na-ion diffusion than can a system without the addition of Mg. Experimentally, we synthesize various $Na_z(Li_y,Mg_x,Ti)O_2$ systems and evaluate their electrochemical characteristics. In agreement with the theoretical study, Mg addition to such systems improves general cell performance. For example, the prepared $Na_{0.646}(Li_{0.207}Mg_{0.013}Ti_{0.78})O_2$ system displays an increase in reversible capacity of 8.5% and in rate performance of 13.5%, compared to those characteristics of a system without the addition of Mg. Computational results indicate that these improvements can be attributed to the slight widening of the Na-$O_6$ layer in the presence of Mg in the $(Li,Ti)O_6$ layer.
Kim, Dae-Weon;Park, Il-Jeong;Ahn, Nak-Kyoon;Jeong, Hang-Chul;Jung, Soo-Hoon;Choi, Joong-Yup;Yang, Dae-Hoon
Resources Recycling
/
v.27
no.4
/
pp.36-43
/
2018
In order to recycle waste nickel-cadmium batteries, cadmium was selectively removed by ion substitution reaction so that cadmium and nickel could be separated efficiently. The electrode powder obtained by crushing the electrode in the waste nickelcadmium battery was leached with sulfuric acid. The cadmium in the nickel-cadmium solution was precipitated with cadmium sulfide by the addition of sodium sulfide. Ion substitution experiments were carried out under various conditions. At the optimum condition with pH = -0.1 and $Na_2S/Cd=2.3$ at room temperature, the residual Cd in the solution was about 100 ppm, and most of it was precipitated with CdS.
Na-β"-Al2O3 has been widely employed as a solid electrolyte for high-temperature sodium (Na) beta-alumina batteries (NBBs) thanks to its superb thermal stability and high ionic conductivity. Recently, a vapor phase conversion (VPC) method has been newly introduced to fabricate thin Na-β"-Al2O3 electrolytes by converting α-Al2O3 into β"-Al2O3 in α-Al2O3/yttria-stabilized zirconia (YSZ) composites under Na+ and O2- dual percolation environments. One of the main challenges that need to be figured out is lowered conductivity due to the large volume fraction of the non-Na+-conducting YSZ. In this study, the effect of lithia addition in the β"-Al2O3 phase on the grain size and ionic conductivity of Na-β"-Al2O3/YSZ solid electrolytes have been investigated in order to enhance the conductivity of the electrolyte. The amount of pre-added lithia (Li2O) precursor as a phase stabilizer was varied at 0, 1, 2, 3, and 4 mol% against that of Al2O3. It turns out that ionic conductivity increases even with 1 mol% lithia addition and reaches 67 mS cm-1 at 350 ℃ of its maximum with 3 mol%, which is two times higher than that of the undoped composite.
Transactions of the Korean Society of Mechanical Engineers A
/
v.41
no.7
/
pp.665-671
/
2017
The alkali-Metal Thermal-to-electric Converter (AMTEC) is one of the promising static energy conversion technologies for the direct conversion of thermal energy to electrical energy. The advantages over a conventional energy converter are its high theoretical conversion efficiency of 40% and power density of 500 W/kg. The working principle of an AMTEC battery is the electrochemical reaction of the sodium through an ion conducting electrolyte. Sodium ion pass through the hot side of the beta"-alumina solid electrolyte (BASE) primarily as a result of the pressure difference. This pressure difference across the BASE has a significant effect on the overall performance of the AMTEC system. In order to build the high pressure difference across the BASE, hermeticity is required for each joined components for high temperature range of $900^{\circ}C$. The AMTEC battery was manufactured by utilizing robust joining technology of BASE/insulator/metal flange interfaces of the system for both structural and electrical stability. The electrical potential difference between the anode and cathode sides, where the electrons emitted from sodium ionization and recombined into sodium, was characterized as the open-circuit voltage. The efforts of technological improvement were concentrated on a high-power output and conversion efficiency. This paper discusses about the joining and performance of the AMTEC systems.
Transition metal chalcogenides have garnered significant attention as anode materials for sodium-ion batteries due to their high theoretical capacity. Nevertheless, their practical application is impeded by their limited lifespan resulting from substantial volume expansion during cycling and their low electrical conductivity. To tackle these issues, this study devised a solution by synthesizing a nanostructured anode material composed of porous CNT (carbon nanotube) spheres and (Ni,Co)Se2 nanocrystals. By employing spray pyrolysis and subsequent heat treatments, a porous-structured (Ni,Co)Se2-CNT composite microsphere was successfully synthesized, and its electrochemical properties as an anode for sodium-ion batteries were evaluated. The synthesized (Ni,Co)Se2-CNT microsphere possesses a porous structure due to the nanovoids that formed as a result of the decomposition of the polystyrene (PS) nanobeads during spray pyrolysis. This porous structure can effectively accommodate the volume expansion that occurs during repeated cycling, while the CNT scaffold enhances electronic conductivity. Consequently, the (Ni,Co)Se2-CNT anode exhibited an initial discharge capacity of 698 mA h g-1 and maintained a high discharge capacity of 400 mA h g-1 after 100 cycles at a current density of 0.2 A g-1.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.33
no.6
/
pp.203-209
/
2023
Cobalt sulfide nanocomposites were synthesized through a simple hydrothermal method as anode materials for sodium ion batteries (SIBs). In this work, a cobalt sulfide nanoparticle (CoS-NF) and a cobalt sulfide nanocomposite integrated with reduced graphene oxide (CoS@G-NC) were fabricated for electrochemical energy storage performance of battery. The as-prepared CoS@G-NC electrode exhibited reversible and stable cycle performance (62 % after 30 cycles at current density of 200 mA g-1). The improved electrochemical property was attributed to the small grain growth and uniform distribution of cobalt sulfide during synthesis, which maximized the diffusion pathway for sodium ions and effectively suppressed the delamination and volume expansion of cobalt sulfide during the conversion reaction. The results provide promising anode materials for next-generation SIBs.
Lithium accounts for only 0.0017% of the earth crust, and it is produced in geographically limited regions such as South America, the United States, and China. Since the first half of 2017, the price of lithium has been continuously increasing, and with the rapid adoption of electric vehicles, lithium resources are expected to be depleted in the near future. In addition, economic blocs worldwide face intensifying scenarios such as competition for technological supremacy and protectionism of domestic industries. Consequently, Korea is deepening its dependence on China for core materials and is vulnerable to the influence of the United States Inflation Reduction Act. We analyze post-lithium secondary battery technologies that rely on more earth-abundant elements to replace lithium, whose production is limited to specific regions. Specifically, we focus on the technological status and issues of sodium-ion, zinc-air, and redox-flow batteries. In addition, research trends in post-lithium secondary batteries are examined. Post-lithium secondary batteries seem promising for large-capacity energy storage systems while reducing the costs of raw materials compared with existing lithium-based technologies.
As demand for electric vehicles increases, the market for lithium-ion batteries is also rapidly increasing. The battery life of lithium-ion batteries is limited, so waste lithium-ion batteries are inevitably generated. Accordingly, lithium was selectively preleached from waste lithium iron phosphate (LiFePO4, hereafter referred to as the LFP) cathode material powder among lithium ion batteries, and iron phosphate (FePO4) powder was recovered. The recovered iron phosphate powder was mixed with alkaline sodium carbonate (Na2CO3) powder and heat treated to confirm its crystalline phase. The heat treatment temperature was set as a variable, and then the leaching rate and powder characteristics of each ingredient were compared after water leaching using Di-water. In this study, lithium showed a leaching rate of approximately 100%, and in the case of powder heat-treated at 800 ℃, phosphorus was leached by approximately 99%, and the leaching residue was confirmed to be a single crystal phase of Fe2O3. Therefore, in this study, lithium, phosphorus, and iron components were individually separated and recovered from waste LFP powder.
Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).
Smelting reduction of spent lithium-ion batteries results in metallic alloys, slag, and dust containing Li(I). Precipitation of Li2CO3 was performed using the synthetic leachate of the dust. Herein, the effects of the precipitant and addition of non-aqueous solvents on the precipitation of Li(I) were investigated. Na2CO3 was a more effective precipitating agent than (NH4)2CO3 owing to the hydrolysis reaction of dissolved ammonium and carbonate. The addition of acetone or ethanol improved the Li(I) precipitation percentage for both the precipitants. When using (NH4)2CO3, the Li(I) precipitation percentage increased at a solution pH of 12. Under the same conditions, the Li(I) precipitation percentage using Na2CO3 was much higher than that using (NH4)2CO3.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.