• Title/Summary/Keyword: Sodium ion

Search Result 625, Processing Time 0.026 seconds

Silicone Rubber Blended with Polyurethane as the Matrix for Ion-Selective Membrane Electrodes

  • Lee, Hyun Jung;Rho, Kyung Lae;Kim, Chang Yong;Oh, Bong Kyun;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.623-630
    • /
    • 1995
  • Silicone rubber-based sodium-selective membranes are developed for solid-state ion sensors. It was shown that the potetiometric performance of SR-based membranes are greatly dependent on the type of neutral carriers employed; among the three ionophores, N,N,N',N'-tetracyclohexyl-1,2-phenylenedioxydiacetamide (ETH 2120), bis[(12-crown-4)methyl]dodecylmethylmalonate (D12C4DMM) and monensin methyl ester (MME), examined, only ETH 2120 was compatible with the SR-based matrix. Addition of about 20 wt% plasticizer to the SR-based matrix provided the resulting membranes with potentiometric properties essentially equivalent to those of the corresponding PVC-based membranes. Owing to the strong adhesive strength of SR-based membranes, the CWEs coated \vith those membranes exhibited long lifetime with conventional electrode-like performance. Blending of PU into the SR matrix increased the lifetime of CWEs from two weeks to one month.

  • PDF

Modeling of time-varying stress in concrete under axial loading and sulfate attack

  • Yin, Guang-Ji;Zuo, Xiao-Bao;Tang, Yu-Juan;Ayinde, Olawale;Ding, Dong-Nan
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.143-152
    • /
    • 2017
  • This paper has numerically investigated the changes of loading-induced stress in concrete with the corrosion time in the sulfate-containing environment. Firstly, based on Fick's law and reaction kinetics, a diffusion-reaction equation of sulfate ion in concrete is proposed, and it is numerically solved to obtain the spatial and temporal distribution of sulfate ion concentration in concrete by the finite difference method. Secondly, by fitting the existed experimental data of concrete in sodium sulfate solutions, the chemical damage of concrete associated with sulfate ion concentration and corrosion time is quantitatively presented. Thirdly, depending on the plastic-damage mechanics, while considering the influence of sulfate attack on concrete properties, a simplified chemo-mechanical damage model, with stress-based plasticity and strain-driven damage, for concrete under axial loading and sulfate attack is determined by introducing the chemical damage degree. Finally, an axially compressed concrete prism immersed into the sodium sulfate solution is regarded as an object to investigate the time-varying stress in concrete subjected to the couplings of axial loading and sulfate attack.

First-principles investigation of the monoclinic NaMnO2 cathode material for rechargeable Na-ion batteries

  • Zhang, Renhui;Lu, Zhibin;Yang, Yingchang;Shi, Wei
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1431-1435
    • /
    • 2018
  • Using first-principles calculations, we successfully investigate the electrochemical performance of the monoclinic $NaMnO_2$ for the sodium ion batteries. $NaMnO_2$ possesses a voltage window of 3.54-2.52 V and theoretical reversible capacity of $136mAh\;g^{-1}$. Besides, we find that the metallicity of the monoclinic $NaMnO_2$ gradually increases during Na extraction. Moreover, the computational Na migration energy barrier in the monoclinic $NaMnO_2$ is 0.18 eV, ensuring ideal conductivity and reversible capacity. Although the Jahn-Teller distortion effects limit the enhancement of the reversible capacity of the monoclinic $NaMnO_2$, it is still a right cathode material for the sodium ion batteries. The computational results are well in consistent with the experimental investigations.

Studies on the Heat Resistance of Bacterial Amylase (part 1) -Effect of Calcium and Sodium Salts- (세균(細菌) amylase 의 내열성(耐熱性)에 관(關)한 연구(硏究) (제(第) 1 보(報)) -Calcium 및 Sodium 염(鹽)의 영향 (影響)에 대(對하)여-)

  • Park, Yoon-Choong;Lee, Han-Chang;Lee, Suk-Kun
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.105-109
    • /
    • 1968
  • 1. The optimum temperature of amylase activity produced by Bacillus subtilis var. M-181 was $50^{\circ}C$, and its activity was lost by heating to $70^{\circ}C$, 10 minutes without addition of salts. 2. Addition of sodium salts effects for heat resistance of the amylase affected differently by kinds of the salt. Among organic sodium salts monosodium glutamate, sodium acetate as sodium propionate affected on heat resistance of the amylase relatively better effects. 3. Addition of 10mg of sodium sulfate per ml of enzyme solution $({D_{30}}^{40^{\circ}}\;1250/ml)$, showed maximum affect on the neat resistance. 4. Coexistence of calcium acetate and sodium acetate, affected on the hear resistance, remarkably.

  • PDF

DFT Study for Azobenzene Crown Ether p-tert-Butylcalix[4]arene Complexed with Alkali Metal Ion

  • Park, Seong-Jun;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.3
    • /
    • pp.541-545
    • /
    • 2008
  • Stable molecular isomers were calculated for the azobenzene crown ether p-tert-butylcalix[4]arene (1) in the host and their alkali-metal-ion complexes. The structures of two distinct isomers (cis and trans) have been optimized using DFT B3LYP/6-31G(d,p) method. Trans isomer of 1 is found to be 11.69 kcal/mol more stable than cis analogue. For two different kinds of complexation mode, the alkali-metal-cation in the crown-ether moiety (exo) has much better complexation efficiency than in the benzene-rings (endo) pocket for both isomers of 1. Sodium ion has much better complexation efficiency than potassium ion in all kinds of complexation mode with host 1. The Na+ complexation efficiency of the trans-complex (1) in the exo-binding mode is 8.24 kcal/mol better than cis-exo analogue.

Decontamination of spent ion exchange resins contaminated with iron-oxide deposits using mineral acid solutions

  • Tokar, E.A.;Matskevich, A.I.;Palamarchuk, M.S.;Parotkina, Yu.A.;Egorin, A.M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2918-2925
    • /
    • 2021
  • The efficiency of decontamination of model spent ion exchange resins, contaminated with magnetite and hematite, with mineral acid solutions, and using electro-decontamination, was evaluated. It has been shown that effective hematite dissolution occurs in concentrated mineral acid solutions. However, the use of direct current increases the decontamination efficiency of spent ion exchange resins contaminated with hematite. It is determined that with increasing voltage and acid concentration, the dissolution efficiency of hematite deposits increases and can exceed 99%. It has been shown that hematite dissolution is accompanied by secondary adsorption of radionuclides due to ion exchange, which can be removed with sodium nitrate solutions.

Removal of Cobalt ion by Foam Flotation(I): Precipitate Flotation (거품부상법을 이용한 코발트이온제거(I): 침전부상법)

  • Jung, In Ha;Park, Hee Seoung;Moon, Je Sun;Yim, Sung Paal;Bae, Ki Kwang
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 1999
  • Simulated liquid waste containing 50 ppm cobalt ion was treated by precipitate flotation using the surfactant of sodium lauryl sulfate. The effects of initial cobalt ion concentration, pH, surfactant concentration, removal time, gas flow rate and foreign ions were estimated on removal efficiency. 35% $H_2O_2$ was added for pre-treatment stage before precipitate flotation. As the result of pre-treatment, optimum removal pH and the pH of treated water being discharged were lowed and optimum removal pH range was broadened. For the result of this experiment, 99.8% removal efficiency was obtained at the condition of 50ppm of initial cobalt ion concentration, pH 9.5, 70 mL/min of gas flow rate, and 30 min of removal time. Attraction between precipitate and surfactant was supposed to be influenced by solubility and chemical affinity among species in sloution as well as zeta potential. The influence of foreign ions such as, $NO_3{^-}$, ${SO_4}^{-2}$, $Na^+$, $Ca^{+2}$ on the removal efficiency was also observed. Removal efficiency by precipitate flotation containing 0.1 M of ${SO_4}^{-2}$ ion decreased to 90% due to the decrease of zeta potential and interruption of precipitation.

  • PDF

Synthesis of cathode material for sodium ion batteries using dry vibration milling (건식 진동밀을 이용한 나트륨이온전지 양극활물질 합성)

  • Lee, Yeon-Woo;Kim, Han-Jun;Kang, Yeonhui;Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.2
    • /
    • pp.70-74
    • /
    • 2017
  • Two milling methods, dry vibration milling and wet ball milling, were used to prepare $Na_{2/3}(Ni_{1/3}Mn_{2/3})O_2$ powders as a cathode material for sodium ion batteries. The morphology and electrochemical property of the two powders with different milling processes were compared to each other. The particle size is less than $1{\mu}m$ in the dry vibration milled powder, while lots of larger particles than $1{\mu}m$ were found in the wet ball milled one. The single phase of $Na_{2/3}(Ni_{1/3}Mn_{2/3})O_2$ was obtained in the temperature range of $875{\sim}900^{\circ}C$. The discharge capacity and discharge voltage of the powder prepared by the dry process were higher than those of one prepared by the wet process.