• Title/Summary/Keyword: Sodium ion

Search Result 627, Processing Time 0.027 seconds

Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins

  • Kwon, Soon-Kyeong;Jun, Sung-Hoon;Kim, Jihyun F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.633-641
    • /
    • 2020
  • Microbial rhodopsins are a superfamily of photoactive membrane proteins with the covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorhodopsin in an uncultivated γ-proteobacterium, light-activated proton pumps have been widely detected among marine bacteria and, together with chlorophyll-based photosynthesis, are considered as an important axis responsible for primary production in the biosphere. Rhodopsins and related proteins show a high level of phylogenetic diversity; we focus on a specific class of bacterial rhodopsins containing the '3 omega motif.' This motif forms a stack of three non-consecutive aromatic amino acids that correlates with the B-C loop orientation and is shared among the phylogenetically close ion pumps such as the NDQ motif-containing sodium-pumping rhodopsin, the NTQ motif-containing chloride-pumping rhodopsin, and some proton-pumping rhodopsins including xanthorhodopsin. Here, we reviewed the recent research progress on these 'omega rhodopsins,' and speculated on their evolutionary origin of functional diversity.

A study on removal of cesium and strontium from aqueous solution using synthetic Na-birnessite (나트륨-버네사이트를 이용한 수용액상의 세슘 및 스트론튬 제거에 관한 연구)

  • Cho, Yunchul;Seol, Bit Na
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.155-164
    • /
    • 2013
  • The main purpose of this research was to examine the adsorption/ion exchange characteristics of radioactive species such as cesium and strontium onto synthetic Na-birnessite (sodium-birnessite). As part of efforts to investigate the sorption behavior of cesium and strontium onto synthetic Na-birnessite, batch isotherm tests were performed under different experimental conditions. Na-birnessite was synthesized by the oxidation of $Mn^{2+}$ ions in sodium hydroxide solution. The synthetic Na-birnessite was characterized by powder x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis. Cesium and strontium concentrations were determined by atomic absorption spectroscopy (AAS). The removal efficiency of strontium by Na-birnessite was around 95 % which was much higher than that of cesium (~ 32 %). The results imply that strontium has a higher affinity for Na-birnessite than cesium because strontium, divalent cation leads to larger electrostatic attraction than monovalent cesium.

X-ray Absorption Spectroscopy of a Poly Sodium 4-Styrensulfonate Intercalated Graphite Oxide Electrode

  • Jeong, Hye-Gyeong;Park, Byeong-Gyu;Kim, Jae-Yeong;No, Han-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.393-393
    • /
    • 2011
  • We investigated the electronic structures of a poly sodium 4-styrensulfonate intercalated graphite oxide (PSSGO) electrode and a precursor graphite oxide (GO) electrode using X-ray absorption spectroscopy (XAS). Both electrodes were obtained from electrochemical cells. We found that in the C K-edge XAS spectra the ${\pi}^*$ state intensity originating from the sp2 hybridization of graphite decreases predominantly in the graphite oxide and PSSGO electrodes. This indicates that the negatively charged electrolyte ion (BF4-) is absorbed onto the electrodes and is transferred to the ${\pi}^*$ state of the both electrodes. The analysis of their F K-edge spectra reveals that more BF4- ions were found in the PSSGO electrode than in the graphite oxide electrode. This indicates that more electrolyte ions are absorbed in the PSSGO than in the graphite oxide electrode. We argue that this is the main reason why PSSGO cells have higher capacitance, higher energy density, and higher power density when compared to the graphite oxide cells. We also found that BF4- is the primary working ion that can be inserted into the interlayers of the PSSGO electrode.

  • PDF

Inabenfide-Induced Alleviation of Salt Stress in Rice as Linked to Changes in Salicylic Acid Content and Catalase Activity

  • Sawada, Hiroko;Kim, Dea-Wook;Kobayashi, Katsuichiro;Shim, Ie-Sung
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.39-44
    • /
    • 2007
  • The effect of inabenfide was investigated in rice seedlings subjected to salt stress in relation to changes in chlorophyll fluorescence(${\Delta}F/Fm'$), lipid peroxidation, salicylic acid(SA) content, and catalase(CAT) activity. A reduction in shoot growth of rice seedlings by 120 mM NaCl treatment was significantly alleviated by pretreatment with 30 ${\mu}M$ inabenfide. Sodium ion content was not affected by pretreatment with inabenfide, suggesting that alleviation was not due to a reduction in sodium ion uptake by the rice seedlings. At three days after NaCl treatment, the rice seedlings pretreated with inabenfide showed a higher ${\Delta}F/Fm'$(30%) and lower lipid peroxidation(28%) compared with the rice seedlings treated with NaCl alone. After NaCl treatment, CAT activity in the third leaf of rice seedlings decreased significantly but alleviated by pretreatment with inabenfide. Furthermore, pretreatment with inabenfide also reduced the level of SA which accumulated drastically in the third leaf of rice seedlings within a day after exposure to salt stress. These results suggest that inabenfide prevents SA accumulation in rice seedlings under salt stress which eventually induces the alleviation of salt stress damage.

  • PDF

Mechanisms of Na adsorption on graphene and graphene oxide: density functional theory approach

  • Moon, Hye Sook;Lee, Ji Hye;Kwon, Soonchul;Kim, Il Tae;Lee, Seung Geol
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.116-120
    • /
    • 2015
  • We investigated the adsorption of Na on graphene and graphene oxide, which are used as anode materials in sodium ion batteries, using density functional theory. The adsorption energy for Na on graphene was -0.507 eV at the hollow sites, implying that adsorption was favorable. In the case of graphene oxide, Na atoms were separately adsorbed on the epoxide and hydroxyl functional groups. The adsorption of Na on graphene oxide-epoxide (adsorption energy of -1.024 eV) was found to be stronger than the adsorption of Na on pristine graphene. However, the adsorption of Na on graphene oxide-hydroxyl resulted in the generation of NaOH as a by-product. Using density of states (DOS) calculations, we found that the DOS of the Na-adsorbed graphene was shifted down more than that of the Na-adsorbed graphene oxide-epoxide. In addition, the intensity of the DOS around the Fermi level for the Na-adsorbed graphene was higher than that for the Na-adsorbed graphene oxide-epoxide.

Synthesis and Properties of Poly[2-ethynyl-N-(p-hydroxyphenylethyl) pyridinium bromide] and Poly [2-ethynyl-N-(p-hydroxyphenylethyl) pyridinium tetraphenylborate]

  • Gal, Yeong-Soon;Jin, Sung-Ho;Lee, Won-Chul;Kim, Sang-Youl
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.407-412
    • /
    • 2004
  • A new hydroxyl group-containing conjugated ionic polymer, poly[2-ethynyl-N-(p-hydroxyphenylethyl)pyridinium bromide], was synthesized by the activated polymerization of 2-ethynylpyridine with p-(2-bromoethyl) phenol without any additional initiator or catalyst. The polymerization proceeded well to give a moderate yield (65%) of polymer at a reaction temparature of 90$^{\circ}C$. Another polymer, poly[2-ethynyl-N-(p-hydroxyphenylethyl)pyridinium tetraphenylborate], was readily prepared by the ion-exchange reaction of poly[2-ethynyl-N-(p-hydroxyphenylethyl)pyridinium bromide] with sodium tetraphenylborate. These polymers were completely soluble in organic solvents such as DMF, DMSO, and acetone, but insoluble in water and ether. Instrumental analyses, such as NMR, IR, and UV-Vis spectroscopies, indicated that the new materials have conjugated polymer backbone systems with the designed substituents and counter anions. X-Ray diffraction analyses of the polymers indicated that they were mostly amorphous.

Effect of trace amount of ferrous and ferric ions on the dissolution of iron plate in magnetically treated 3% sodium chloride solution

  • Chiba, Atsushi;Ohki, Tomohiro;Wu, Wen-Chang
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.45-50
    • /
    • 2005
  • A 3% NaCl solution of 1 $dm^3$ circulated with 1.5 $dm^3/min$ by a pump for 24 h in the presence of magnetic field. An iron plate immersed in a $100cm^3$ of test solution for 24 h. The rest potential and pH on surface fixed after 3 h. Containing 0~120 ppm of Fe(II) ion, the dissolution in the magnetically treated solution rose comparing with that in the non-magnetically treated solution. The dissolution amount reached to maximum at 50 ppm, then fixed in the non-magnetically treated solution. When Fe(II) ion existed in the magnetically treated solution, dissolution accelerated a little. In the non-magnetic treated solution containing 10~125 ppm of Fe(III) ion existed, the dissolution accelerated. The dissolution amounts reached to maximum at 50 ppm, then decreased from maximum value. In the magnetically treated solution, the dissolution amounts reached to minimum until 50 ppm, then increased from minimum value. The dissolution amounts affected larger with increasing of magnetic flux density. Fe(II), Fe(III) ions and magnetic treatment affected to formation of $Fe(OH)_2$ and/or $Fe_3O_4$ films. The magnetically treated effects memorized about one month.

Removal of Cadmium Ion (Cd2+) by Pseudomonas aeruginosa Immobilized in Ca-Alginate Gel Beads in Packed-Bed Column Reactor (충전층 반응기내에서 고정된 Pseudomonas aeruginosa에 의한 Cd2+의 제거)

  • Choi, Kwang Soo;Kim, Chul Kyung
    • Clean Technology
    • /
    • v.8 no.4
    • /
    • pp.217-222
    • /
    • 2002
  • The effects of initial cadmium ion concentrations (50, 100, 200, 300ppm), and feeding velocities (30, 45, 60mL/hr) on the removal ratio of cadmium ion by Pseudomonas aeruginosa ATCC 27853 immobilized in Ca-alginate gel beads in a packed-bed column reactor were investigated at operating temperature $37^{\circ}C$. The removal ratio of cadmium ion with variable initial concentration was decreased in the following order : 50ppm > 100ppm > 200ppm > 300ppm. The optimum removal conditions of cadmium ion by Pseudomonas aeruginosa ATCC 27853 were initial concentration 50ppm, feeding velocity 30mL/hr.

  • PDF

Effect of Na, K, Ca and Mg ions on the Action Potential of the Sinoatrial Node in the Rabbit (토끼 동방결절 활동전압에 대한 Na, K, Ca 및 Mg 이온의 영향)

  • Lee, Jeong-Ryeol;Eom, Yung-Ui
    • Journal of Chest Surgery
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 1985
  • Isolated sinus node cells of the rabbit were used to assess the effects of extracellular Na, K, Ca and Mg concentrations on cardiac pacemaker activity. With intracellular glass micro-electrodes spontaneous action potentials of SA node were recorded and the effects of various ions and their blockers were analyzed in terms of the cycle length, the amplitude and the duration of action potentials, the results obtained were as follows. 1. Sodium reduction [up to 30%] decreased the amplitude of action potential and lengthened the cycle length. TTX, specific blocker of Na channel slightly lengthened the cycle length. 2. Increasing potassium ion concentration, the duration of action potential decreased and the frequency increased in 6mM, however, spontaneous action potential was stopped in 24 mM. Barium ion known to be decreasing K conductance increased the duration of action potential but no significant change in the cycle length was noticed. 3. Calcium ion has shortening effect on the duration and the cycle length of action potential but not with dose-dependent manner. Cadmium ion .[0.02mM] lengthened cycle length and the duration of action potential. 4. Increasing the concentration of magnesium ion the cycle length was lengthened, significantly.

  • PDF

Li- and Na-ion Storage Performance of Natural Graphite via Simple Flotation Process

  • Laziz, Noureddine Ait;Abou-Rjeily, John;Darwiche, Ali;Toufaily, Joumana;Outzourhit, Abdelkader;Ghamouss, Fouad;Sougrati, Moulay Tahar
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.320-329
    • /
    • 2018
  • Natural graphite is obtained from an abandoned open-cast mine and purified by a simple, eco-friendly and affordable beneficiation process including ball milling and flotation process. Both raw graphite (55 wt %) and its concentrate (85 wt %) were electrochemically tested in order to evaluate these materials as anode materials for Li-ion and Na-ion batteries. It was found that both raw and purified graphites exhibit good electrochemical activities with respect to lithium and sodium ions through completely different reaction mechanisms. The encouraging results demonstrated in this work suggest that both raw and graphite concentrates after flotation could be used respectively for stationary and embedded applications. This strategy would help in developing local electrical storage systems with a significantly low environmental footprint.