Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.4.320

Li- and Na-ion Storage Performance of Natural Graphite via Simple Flotation Process  

Laziz, Noureddine Ait (Laboratoire de Nanomateriaux pour l'energie et l'environnement (LN2E)- Universite Cadi Ayyad)
Abou-Rjeily, John (Faculte des Sciences, Laboratoire de Physico-Chimie des Materiaux et des Electrolytes pour l'Energie (PCM2E), Universite Francois Rabelais)
Darwiche, Ali (Institut Charles Gerhardt, CNRS UMR 5253, Universite de Montpellier)
Toufaily, Joumana (Laboratory of Applied Studies for Sustainable Development and Renewable Energy (LEADDER), MCEMA, Lebanese University)
Outzourhit, Abdelkader (Laboratoire de Nanomateriaux pour l'energie et l'environnement (LN2E)- Universite Cadi Ayyad)
Ghamouss, Fouad (Faculte des Sciences, Laboratoire de Physico-Chimie des Materiaux et des Electrolytes pour l'Energie (PCM2E), Universite Francois Rabelais)
Sougrati, Moulay Tahar (Institut Charles Gerhardt, CNRS UMR 5253, Universite de Montpellier)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.4, 2018 , pp. 320-329 More about this Journal
Abstract
Natural graphite is obtained from an abandoned open-cast mine and purified by a simple, eco-friendly and affordable beneficiation process including ball milling and flotation process. Both raw graphite (55 wt %) and its concentrate (85 wt %) were electrochemically tested in order to evaluate these materials as anode materials for Li-ion and Na-ion batteries. It was found that both raw and purified graphites exhibit good electrochemical activities with respect to lithium and sodium ions through completely different reaction mechanisms. The encouraging results demonstrated in this work suggest that both raw and graphite concentrates after flotation could be used respectively for stationary and embedded applications. This strategy would help in developing local electrical storage systems with a significantly low environmental footprint.
Keywords
Natural graphite; Na-ion batteries; Li-ion batteries; Energy storage; Stationary application; Froth flotation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Zubi, R. Dufo-Lopez, N. Pardo, G. Pasaoglu, Energ. Convers. Manag., 2016, 122, 439-448.   DOI
2 Geographical Assessment of Solar Resource and Performance of Photovoltaic, Technology Joint Research Centre, European Commission (PVGIS), 2016.
3 A. El Fathi, L. Nkhaili, A. Bennouna, A. Outzourhit, Energ. Convers. Manag., 2014, 86, 490-495.   DOI
4 M. Herstedt, L. Fransson, K. Edstrom, J. Power Sourc., 2003, 124(1), 191-196.   DOI
5 K.A. Striebel, A. Sierra, J. Shim, C.-W. Wang, A.M. Sastry, J. Power Sourc., 2004, 134(2), 241-251.   DOI
6 J. Park, S.S. Park, Y.S. Won, Electrochim. Acta, 2013, 107, 467-472.   DOI
7 S. Megahed, B. Scrosati, J. Power Sourc., 1994, 51(1-2), 79-104.   DOI
8 H. Zhao, J. Ren, X. He, J. Li, C. Jiang, C. Wan, Solid State Sci., 2008, 10(5), 612-617.   DOI
9 Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev., 2011, 111(5), 3577-3613.   DOI
10 K. Zaghib, X. Song, A. Guerfi, R. Rioux, K. Kinoshita, J. Power Sourc., 2003, 119, 8-15.
11 J. Sangster, JPED, 2007, 28, 571-579.   DOI
12 K. Nobuhara, H. Nakayama, M. Nose, S. Nakanishi, H. Iba, J. Power Sourc., 2013, 243, 585-587.   DOI
13 B. Jache, P. Adelhelm, Angew. Chem. Int. Ed., 2014, 126(38), 10333-10337.   DOI
14 H. Kim, J. Hong, Y. Park, J. Kim, I. Hwang, K. Kang, Adv. Funct. Mater., 2015, 25(4), 534-541.   DOI
15 S. Chehreh Chelgani, M. Rudolph, R. Kratzsch, D. Sandmann, J. Gutzmer, Min. Proc. Extr. Metal. Rev., 2016, 37, 58-68.   DOI
16 M.C. Furstenau, G. Jameson, R. Yoon Eds, in "Froth Flotation a Century of Innovation" Publisher: Society for Mining, Metallurgy, and Exploration, 2007.
17 M. Hochberg Renewable Energy Growth in Morocco. Available from: https://www.mei.edu/sites/default/files/publications/PF26_Hochberg_Moroccorenewables_web.pdf.
18 S. El Baz, M. Baz, M. Barakate, L. Hassani, A. El Gharmali, B. Imziln, Sci. World J., 2015, 2015, 731834.
19 A. EL Gharmali, (Ph.D. thesis) Marrakech, Morocco: University Cadi Ayyad, 2000.
20 Y. Taha, M. Benzaazoua, R. Hakkou, M. Mansori, Miner. Eng., 2017, 107, 123-138.   DOI
21 L. Bokobza, J.-L. Bruneel, M. Couzi, C, 2015, 1(1), 77-94.
22 P. Gillet, A. Le Cleac'h, M. Madon, JGR: Solid Earth, 1990, 95(B13), 21635-21655.
23 D. Krishnamurti, Proc. Indian Acad. Sci., 1958, 47, 276-291.   DOI
24 T. Ganetsos, T. Katsaros, P. Vandenabeele, S. Greiff, S. Hartmann, Int. J. Chem. Mater. Res., 2013, 3, 5-9.
25 M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Carbon, 2000, 38(2), 183-197.   DOI
26 M. Yoshio, H. Wang, K. Fukuda, Y. Hara, Y. Adachi, J. Electrochem. Soc., 2000, 147(4), 1245-1250.   DOI
27 E.M.C. Jones, O.O. Capraz, S.R. White, N.R. Sottos, J. Electrochem. Soc., 2016, 163(9), A1965-A1974.   DOI
28 M. Yoshio, R.J. Brodd, A. Kozawa, eds., Lithium-Ion Batteries: Science and Technologies, Springer-Verlag, New York, 2009.
29 T. Kajita, T. Itoh, Phys. Chem. Chem. Phys, 2017, 20, 2188-2195.
30 S. Gunasekaran, G. Anbalagan, S. Pandi, J. Raman Spectrosc., 2006, 37(9), 892-899.   DOI
31 M. Nie, J. Demeaux, B.T. Young, D.R. Heskett, Y. Chen, A. Bose, J.C. Woicik, B.L. Lucht, J. Electrochem. Soc., 2015, 162(13), A7008-A7014.   DOI