• 제목/요약/키워드: Sodium ascorbate

검색결과 56건 처리시간 0.029초

암세포 증식에 미치는 인삼과 Vitamin C의 영향 I. 인삼과 Vitamin C 병용에 의한 In Vitro에서 암세포 증식 억제 효과 (Effect of Panax ginseng and Sodium Ascorbate (Vitamin C) Treatment on Cancer Cell Growth I. Synergism of Combined Panax ginseng and Vitamin C Action in vitro)

  • 황우익;손흥수
    • Journal of Ginseng Research
    • /
    • 제13권2호
    • /
    • pp.242-247
    • /
    • 1989
  • The effect of ginseng extract and sodium ascorbate (vitamin C) administered separately or in combination on the some cancer cells cultured in vitro have been examined. Mouse leukemic cells (L1210 and P388), human rectal cancer cells (HRT-18) and human colon cancer cells (HCT-48) were used for the experiment. When given separately, the growth rate for each kind of cancer cell was inhibited In proportion to the concentration of ginseng extract or vitamin C. The inhibitory effect on the growth rate of the cancer cells was stronger in ginseng extract than in vitamin C except for the HCT-48 cells. Based on the cytotoxic activity, combined administration of ginseng extract and vitamin C demonstrated a synergistic inhibition of cancer cell growth. The cytotoxic activities of ginseng extract and vitamin C on the mouse leukemic cells were more sensitive than on human colon cancer cells. And the sensitivity of cytotoxic activity was somewhat different in different cancer cell lines.

  • PDF

Effect of Gleditsia sinensis Lam. Extract on Physico-Chemical Properties of Emulsion-Type Pork Sausages

  • Jin, Sang-Keun;Yang, Han-Sul;Choi, Jung-Seok
    • 한국축산식품학회지
    • /
    • 제37권2호
    • /
    • pp.274-287
    • /
    • 2017
  • This study was performed to investigate the effect of Gleditsia sinensis Lam. extract on the physicochemical properties of emulsion-type pork sausages during storage at $10^{\circ}C$ for 4 wk. Treatments were as follows: (C, control; T1, sodium ascorbate 0.05%; T2, Gleditsia sinensis Lam. 0.05%; T3, Gleditsia sinensis Lam. 0.1%; T4, Gleditsia sinensis Lam. 0.2%; T5, Gleditsia sinensis Lam. 0.1% + sodium ascorbate 0.05%). The values of pH, moisture content, lightness, redness, and sensory attributes were all significantly decreased, while the yellowness, chroma, hue angle, and texture properties were increased during storage with increase of the Gleditsia sinensis Lam. extract added. In addition, the antioxidant activity and antimicrobial activity in the sausages displayed significant increases (p<0.05). Therefore, although it was concluded that the addition of Gleditsia sinensis Lam. extract is not effective for improvement of the physical properties compared to chemical additives in sausages, it could be applied to meat products as a natural preservatives.

Effects of Temperature, Illumination, and Sodium Ascorbate on Browning of Green Tea Infusion

  • Ye, Qian;Chen, Hao;Zhang, Lin Bin;Ye, Jian Hui;Lu, Jian Liang;Liang, Yue Rong
    • Food Science and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.932-938
    • /
    • 2009
  • Browning of tea infusion is an obstructive factor influencing shelf life of ready-to-drink green tea. Effects of temperature and illumination on the browning of green tea infusion were investigated. It was shown that both elevated temperature and illumination led to the browning of green tea infusion, but temperature had greater effect on infusion color and level of catechins than illumination. The levels of unoxidized catechins such as (-)-epigallocatechin gallate (EGCg), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECg), (-)-epicatechin (EC), and total catechins remaining in the tea infusion were significantly correlated to color parameters of the tea infusion. Sodium ascorbate inhibited the infusion browning by suppressing the oxidation of tea catechins and it is considered to be a more suitable preservative for prolonging shelf life of ready-to-drink green tea than ascorbic acid because it has less effect on tea taste. The effects of temperature and illumination on the epimerization of catechins were also discussed.

합성 항산화제가 단백질 분해효소에 미치는 영향-Pepsin의 활성에 미치는 합성 항산화제의 영향 및 기질 Octapeptide의 합성- (The Effect of Synthetic Antioxidants on the proteolytic Enzymes-The Effect of Synthetic Antioxidants on the Activity of the Pepsin and Synthesis of Octapeptide as a Substrate-)

  • 김상옥
    • Journal of Nutrition and Health
    • /
    • 제14권3호
    • /
    • pp.124-128
    • /
    • 1981
  • This study was carried out to understand the activity of pepsin, the proteolytic enzyme, to octapeptide (angiotensin II) in the presence of various synthetic antioxidants as food additives. 1) Dibutyl hydroxy toluene, butyl hydroxyanisole and ethyl protocathechuate did not influence the inhibitory activity of pepsin an the octapeptide as a substrate, but sodium-L-ascorbate inhibited pepsin activity at above 100ppm. However sodium L-ascorbate was completely removed after 30 minutes. 2) Pepsin brought about a quick break up the octapeptide, Asp-Arg-Val-Tyr-Ile-His-Gly-Phe, by splitting the Gly-Phe and Val-Tyr bond. 3) The melting point of synthetized octapeptide was $209-212^{\circ}C$, chemical formula and molecula weight were $C_{43}H_{65}N_{13}O_{12}{\cdot}CH_3COOH{\cdot}H_2O$ and 956.05, respectively. 4) The amino acid mole ratio of synthetized octapeptide by acid hydrolysis were Asp:0.98, Arg: 1.02, Val: 1.00. Tyr: 0.95, Ile: 1.00, His: 1.03, Gly: 0.96, Phe: 1.00.

  • PDF

Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings

  • Hasanuzzaman, Mirza;Hossain, Mohammad Anwar;Fujita, Masayuki
    • Plant Biotechnology Reports
    • /
    • 제5권4호
    • /
    • pp.353-365
    • /
    • 2011
  • The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the $H_2O_2$ and lipid peroxidation levels. Exogenous NO pretreatment of the seedlings had little influence on the nonenzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.

Reaction of Drugs with Sodium Nitroprusside as a Source of Nitrosamines

  • Park, Jeen-Woo;Gary E. Means
    • Archives of Pharmacal Research
    • /
    • 제14권2호
    • /
    • pp.118-123
    • /
    • 1991
  • Potentially dangerous nitrosamines have been shown to result from the reaction of sodium nitrogusside with several drugs under physiological conditions (pH 7.3 and $37^\circ{C})$. In each case the products were identical to those produced upon reaction with nitrous acid at much lower pH values. Reaction rates were shown to reflect a first order dependence on both amine and nitroprusside concentrations and to increase at higher pH values, approximately in proportion to concentrations of unprotonated amine. Fast reactions of sodium nitroprusside with reduced glutathione, cysteine, and ascorbate suppress but do not prevent the conversion of amines into N-nitrosamines. These results show sodium nitroprusside to be very potent nitrosating agent under physiological conditions and suggested nitrosamines may be formed during its normal pharmacological administration.

  • PDF

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF

고 Tannin 함유 감과실로 부터 mRNA의 분리 (Isolation of High-Quality mRNA from Tannin-Rich Persimmon Fruit)

  • 강인규
    • 한국식품저장유통학회지
    • /
    • 제4권1호
    • /
    • pp.45-51
    • /
    • 1997
  • In our studies on the role of $\beta$-galactosidase in fruit softening, significant difficulty, was encountered in our attempts to extract RNA from persimmon(Diospyros kaki L. cv. Fuyu) fruit due to astringency and tannin content. Initial, unsuccessful RNA extractions involved methods using guanidinium isothiocyanate/CsCl with and without polyvinylpyrrolidone(PVP), phenol/sodium lauryl sulfate(SDS), guanidinium hydrochloride, as well as polysomal RNA purification method that used 0.2 M Tris-HCI (pH 9.0) containing KCI, Mg-acetate, EDTA, $\beta$-mercaptoethanol, and sucrose. A method was devised which employed treatment of fruit with CO2 gas to diminish astringency prior to RNA extraction, followed by extraction of tissue powders with Proteinase K extraction buffer containing PVP and ascorbate at an alkaline pH. This procedure resulted in the removal of tannins and other polyphenolics and extraction of relatively large amount of high-quality RNA suitable for cDNA library construction and polymerase chain reaction(PCR). Futhermore, the procedure does not use the toxic and corrosive chemical guanidinium isothiocyanate or require ultracentrifugation.

  • PDF

Use of Green Tea Extract and Rosemary Extract in Naturally Cured Pork Sausages with White Kimchi Powder

  • Yoon, Jiye;Bae, Su Min;Gwak, Seung Hwa;Jeong, Jong Youn
    • 한국축산식품학회지
    • /
    • 제41권5호
    • /
    • pp.840-854
    • /
    • 2021
  • The impact of green tea extract powder and rosemary extract powder, alone or in combination, on the quality characteristics of naturally cured pork sausages produced with white kimchi powder as a nitrate source was evaluated. Ground pork sausages were assigned to one of seven treatments: control (0.01% sodium nitrite and 0.05% sodium ascorbate), treatment 1 (0.3% white kimchi powder and 0.05% green tea extract powder), treatment 2 (0.3% white kimchi powder and 0.1% green tea extract powder), treatment 3 (0.3% white kimchi powder and 0.05% rosemary extract powder), treatment 4 (0.3% white kimchi powder and 0.1% rosemary extract powder), treatment 5 (0.3% white kimchi powder, 0.05% green tea extract powder, and 0.05% rosemary extract powder), and treatment 6 (0.3% celery juice powder, 0.05% green tea extract powder, and 0.05% rosemary extract powder). Naturally cured products had lower (p<0.05) cooking yield and residual nitrite content than control sausages. However, compared to the control, naturally cured products with white kimchi powder (treatments 1 to 5) showed similar the pH, oxidation-reduction potential, CIE L* values, CIE a* values, nitrosyl hemochrome content, total pigment content, and curing efficiency to the control. When the amount of green tea extract powder or rosemary extract powder was increased to 0.1% (treatments 2 and 4), lipid oxidation was reduced (p<0.05). These results indicate that green tea extract powder, rosemary extract powder, and white kimchi powder may provide an effective solution to replace synthetic nitrite and ascorbate used in traditionally cured products.

Influence of Food Ingredients on the Formation of Heterocyclic Aromatic Amine in Cooked Pork Patties

  • Shin, Han-Seung
    • Food Science and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.572-575
    • /
    • 2005
  • The effects of cooking method, cooking time and various food ingredients on the formation/ inhibition of heterocyclic aromatic amines (HAAs) in pork products were investigated. Three HAAs, 2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline ($MeIQ_x$), 2-amino-3,4,8-trimethylimidazo [4,5-f] quinoxaline ($DiMeIQ_x$) and 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) were measured in pork products using solid-phase extraction and HPLC. Pork patties were boiled, oven-broiled and pan-fried to internal temperatures of 71, 77 and $88^{\circ}C$. Generally, HAA concentrations increased with increasing internal temperature, and HAA formation was greatest with pan-fried. Selected food ingredients (vitamin E, sodium nitrite, sodium tripolyphosphate, sodium ascorbate, Nanking cherry tissue and cherry tissue extract) inhibited HAA formation in pork patties fried at $225^{\circ}C$ for 10 min/side, with the greater inhibition provided by cherry tissue and its methanolic extract.