• Title/Summary/Keyword: Sodium Silicate

Search Result 328, Processing Time 0.029 seconds

A study on corrosion resistance and surface properties of AZ31 alloy according to Ca-GP addition during PEO treatment (PEO 처리시 Ca-GP첨가에 따른 AZ31합금의 내식성 및 표면특성에 관한 연구)

  • Lee, Jun-Su;Park, Je-Shin;Park, Il-Song
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.238-247
    • /
    • 2021
  • PEO (plasma electrolytic oxidation) was applied to modify the surface of AZ31 magnesium alloy in this study. The mixed solution of sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) was used as the electrolyte, and 0 - 0.05 g/L of Ca-GP (Glycerol Phosphate Calcium salt) was added in the electrolyte as an additive. PEO treatment was conducted at a current density of 30mA/cm2 for 5 minutes using a DC power supply. The surface properties were identified by SEM, XRD and surface roughness analyses, and the corrosion resistance was evaluated by potentiodynamic polarization and immersion tests. In addition, the biocompatibility was evaluated by immersion test in SBF solution. As the concentration of Ca-GP was increased, the surface morphology was denser and more uniform, and the amount of Ca and the thickness of oxide layer increased. Only Mg peak was observed in XRD analysis due to very thin oxide layer. The corrosion resistance of PEO-treated samples increased with the concentration of Ca-GP in comparision with the untreated sample. In particular, the highest corrosion resistance was identified at the group of 0.04g Ca-GP through potentiodynamic polarization and immersion tests in saline solution (0.9 wt.%NaCl). During the immersion in saline solution, pH rapidly increased at the beginning of immersion period due to rapid corrosion, and then increase rate of pH decreased. However, the pH value in the SBF temporarily increased from 7.4 to 8.5 during the day, then decreased due to the inhibition of corrosion with HA(hydroxyapatite) formation.

Predictive modeling of the compressive strength of bacteria-incorporated geopolymer concrete using a gene expression programming approach

  • Mansouri, Iman;Ostovari, Mobin;Awoyera, Paul O.;Hu, Jong Wan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.319-332
    • /
    • 2021
  • The performance of gene expression programming (GEP) in predicting the compressive strength of bacteria-incorporated geopolymer concrete (GPC) was examined in this study. Ground-granulated blast-furnace slag (GGBS), new bacterial strains, fly ash (FA), silica fume (SF), metakaolin (MK), and manufactured sand were used as ingredients in the concrete mixture. For the geopolymer preparation, an 8 M sodium hydroxide (NaOH) solution was used, and the ambient curing temperature (28℃) was maintained for all mixtures. The ratio of sodium silicate (Na2SiO3) to NaOH was 2.33, and the ratio of alkaline liquid to binder was 0.35. Based on experimental data collected from the literature, an evolutionary-based algorithm (GEP) was proposed to develop new predictive models for estimating the compressive strength of GPC containing bacteria. Data were classified into training and testing sets to obtain a closed-form solution using GEP. Independent variables for the model were the constituent materials of GPC, such as FA, MK, SF, and Bacillus bacteria. A total of six GEP formulations were developed for predicting the compressive strength of bacteria-incorporated GPC obtained at 1, 3, 7, 28, 56, and 90 days of curing. 80% and 20% of the data were used for training and testing the models, respectively. R2 values in the range of 0.9747 and 0.9950 (including train and test dataset) were obtained for the concrete samples, which showed that GEP can be used to predict the compressive strength of GPC containing bacteria with minimal error. Moreover, the GEP models were in good agreement with the experimental datasets and were robust and reliable. The models developed could serve as a tool for concrete constructors using geopolymers within the framework of this research.

EFFECTS OF DIETARY SILICIC ACID AND CADMIUM ON SHORT-TERM MINERAL BALANCES IN SHEEP

  • Bruce, L.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.2 no.4
    • /
    • pp.579-582
    • /
    • 1989
  • Previous experiments have shown that aqueous sodium silicate ingested in drinking water may modify the gastrointestinal uptake and(or) tissue retention of certain trace elements, including heavy metals. The present experiment tested, with a mineral balance trial using sheep, the hypothesis that dietary silicic acid could modify uptake, retention and(or) biological effects of dietary Cd. Twenty-four wethers were fed a fibrous diet of ground alfalfa hay and cottonseed hulls to which either 0 or 150 ppm Cd was added as $CdCl_2$ and 0, .5 or 1% silicic acid (as dry matter of the diet). Body weight, feed intake, excretion of urine (volume) and feces (weight), digestibility of dry and organic matter, retention of nitrogen, and packed cell volumes of blood were not affected by either Cd or silicic acid (P<.10). Cadmium decreased (P<.05) Ca retention and increased (P<.01) Mg retention. Silicic acid decreased (P<.05) K retention. Silicic acid failed (P<.01) to modify the retention of added dietary Cd. Body retention of K, Mn and Ni in response to silicic acid varied with Cd levels. If Cd is interfering with mineral retention, silicic acid may be effective in preventing this interference.

A Study on the Engineering Properties of Grout Materials Using a Magnetic Field Treated Water (자화수를 사용한 주입재의 공학적 특성에 관한 연구)

  • Chun, Byung-Sik;Park, Doo-Hee;Yang, Hyung-Chil;Jung, Jong-Ju;Lee, Sang-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1195-1203
    • /
    • 2006
  • Water that is treated by passing through a magnetic field of certain strength is called Magnetic Field Treated Water(MFTW). Previous research indicate that use of MFTW can save 5% of cement dosage, decrease bleeding of concrete, and improve resistance to freezing. The reason why MFTW can improve characteristics of concrete can be explained by the molecular structure of water. Magnetic force can break apart water clusters into single molecules or smaller ones, therefore, the activity of water is improved. While hydration of cement particles is in progress, the MFTW can penetrate the core region of cement particles more easily. Hence, hydration takes place more efficiently which in turn improves concrete compressive strength. Test results demonstrate that the compressive strength of the sodium silicate cement grout homogel increases by approximately 20 - 50% by using the MFTW.

  • PDF

Development and Characteristics of Thixotropic Grout based on Colloidal Silica (실리카 콜로이드를 이용한 가소성 그라우트의 개발 및 공학적 특성)

  • Ryu, Dong-Sung;Jeong, Gyeong-Hwan;Shin, Min-Sik;Kim, Dong-Hae;Lee, Jun-Seok;Jung, Du-Hwoe
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1283-1290
    • /
    • 2005
  • A thixotropic grout has been newly developed for the use of back-filling a tail void in the shield tunnel and filling up ground voids. The grout developed in the study is a mixture of colloidal silica, cement and some functional additives. Its engineering characteristics was investigated by measuring a viscosity and unconfined compressive strengths. The optimum mixing proportion for an effective thixotropic grout was proposed through several repeated laboratory tests. The various physical properties such as thixotropy, unconfined compressive strengths, and durability of the thixotropic grout and the gels produced from the grout were compared with those of the well-known waterglass grout such as L.W.. The thixotropic grout developed in the study exhibited an excellent performance for back-filling of tail voids, based on experimental results compared to the existing waterglass grout.

  • PDF

Characteristic of Strength Increase in Clayey Soil by Electrokinetic Injection (동전기 주입에 의한 점성토의 강도증가 특성)

  • Kim, Ki-Nyun;Kim, Jong-Yun;Han, Sang-Jae;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.910-915
    • /
    • 2005
  • In this study a series of tests(bench scale test) are carried out for increasing in strength of clayey soil by EK-Injection method. In addition, the effects of strength increase in the treated sample are measured by operating the vane shear test device during 25 days at 5 days intervals in order to estimate the effect of ground improvement caused by diffusion. The test results show that the strength increase was developed approximately double to 7 times in comparison to initial shear strength, and outstanding strength increase was created as much as 7 times while injecting the sodium silicate and phosphoric acid in anolyte and catholyte. In addition, the measured shear strength with the influence of diffusion and reduction of water-content had a tendency to converge in constant value in proportion to elapsed time. As a result of this study, strength increment developed by the influence of EK-Injection and diffusion rather than the reduction of water-content were high as 1000% on average

  • PDF

Synthesis and Biodistribution of Cat's Eye-shaped [57Co]CoO@SiO2 Nanoshell Aqueous Colloids for Single Photon Emission Computed Tomography (SPECT) Imaging Agent

  • Kwon, Minjae;Park, Jeong Hoon;Jang, Beom-Su;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2367-2370
    • /
    • 2014
  • "Cat's eye"-shaped $[^{57}Co]CoO@SiO_2$ core-shell nanostructure was prepared by the reverse microemulsion method combined with radioisotope technique to investigate a potential imaging agent for a single photon emission computed tomography (SPECT) in nuclear medicine. The core cobalt oxide nanorods were obtained by thermal decomposition of $Co-(oleate)_2$ precursor from radio isotope Co-57 containing cobalt chloride and sodium oleate. The $SiO_2$ coating on the surface of the core cobalt oxide nanorods was produced by hydrolysis and a condensation reaction of tetraethylorthosilicate (TEOS) in the water phase of the reverse microemulsion system. In vivo test, micro SPECT image was acquired with nude mice after 30 min of intravenous injection of $[^{57}Co]CoO@SiO_2$ core-shell nanostructure.

Preparation and its Characteristics of Fly Ash-based Geopolymeric Mortar using Low Grade Silica Waste (저급규석을 활용한 Fly Ash 지오폴리머 모르타르 제조 및 특성)

  • Son, Se-Gu;Hong, Seung-Yeob;Kim, Young-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.7
    • /
    • pp.395-400
    • /
    • 2008
  • This paper indicates the investigation about the development of ET (Environmental Technology) industrial geopolymeric materials from mixture silica mine waste, coal fly ash and alkali activator solution (sodium silicate) by the geopolymer technique at ambient temperature. The results showed that higher compressive strength of geopolymeric mortar increased with a reduce of L/S ratio and increased along with an increase of coal fly ash content. The compressive strengths of geopolymer mortar on low silica of C Silica Mine and K Silica Mine are 18.7 MPa, 20.4 MPa, respectively. Compressive strength of geopolymeric mortar depends on L/S ratio and coal fly ash content added.. Additionally, scanning electron microscope (SEM) techniques are used to characterize the microstructure of the geopolymeric mortars. SEM observation shows that it is possible to have amorphous aluminosilicate gel within mortar. XRD patterns indicate the fact that geopolymeric mortar is composed of amorphous aluminosilicate phase, calcite and quartz.

The Effect of pH on Synthesis of Nano-Silica Using Water Glass (물유리를 이용한 나노실리카 제조 시 pH가 미치는 영향)

  • Choi, Jin Seok;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.4
    • /
    • pp.209-213
    • /
    • 2015
  • Synthesis of nano-silica using water glass in a Sol-Gel process is one of several methods to manufacture nano-silica. In nano-silica synthesized from water glass, there are various metal impurities. However, synthesis of nano-silica using water glass in a Sol-Gel process is an interesting method because it is relatively simple and cheap. In this study, nano-silica was synthesized from water glass; we investigated the effect of pH on the synthesis of nano-silica. The morphology of the nanosilica with pH 2 was flat, but the surface of the nano-silica with pH 10 had holes similar to small craters. As a result of ICP-OES analysis, the amount of Na in the nano-silica with pH 2 was found to be 170 mg/kg. On the other hand, the amount of Na in the nano-silica with pH 10 was found to be 56,930 mg/kg. After calcination, the crystal structure of the nano-silica with pH 2 was amorphous. The crystal structure of the nano-silica with pH 10 transformed from amorphous to tridymite. This is because elemental Na in the nano-silica had the effect of decreasing the phase transformation temperature.

Relationship between Compressive Strength of Geo-polymers and Pre-curing Conditions

  • Kim, Hyunjung;Kim, Yooteak
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.155-163
    • /
    • 2013
  • Meta-kaolin (MK) and blast furnace slag (BS) were used as raw materials with NaOH and sodium silicate as alkali activators for making geo-polymers. The compressive strength with respect to the various pre-curing conditions was investigated. In order to improve the recycling rate of BS while still obtaining high compressive strength of the geo-polymers, it was necessary to provide additional CaO to the MK by adding BS. The specimens containing greater amounts of BS can be applied to fields that require high initial compressive strength. Alkali activator(s) are inevitably required to make geo-polymers useful. High temperature pre-curing plays an important role in improving compressive strength in geo-polymers at the early stage of curing. On the other hand, long-term curing produced little to no positive effects and may have even worsened the compressive strength of the geo-polymers because of micro-structural defects through volume expansion by high temperature pre-curing. Therefore, a pre-curing process at a medium range temperature of $50^{\circ}C$ is recommended because a continuous increase in compressive strength during the entire curing period as well as good compressive strength at the early stages can be obtained.