• Title/Summary/Keyword: Sodium Silicate

Search Result 328, Processing Time 0.03 seconds

Fabrication of lightweight geopolymer based on the IGCC slag (IGCC 용융 슬래그를 이용한 경량 지오폴리머 제조)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.319-326
    • /
    • 2017
  • In this study, a lightweight geopolymer was prepared using by slag discharged from IGCC (Integrated Gasification Combined Cycle) power plant and its physical properties, the density and compressive strength, were analyzed as a function of the concentration of alkali activators, W/S ratio and aging times. Also the possibility of applying it to lightweight materials by adding Si sludge as a foaming agent to the geopolymerg was investigated. In particular, a complex composition of alkali activator and a pre-curing process were applied to improve the strength properties of lightweight geopolymers. While the compressive strength of the lightweight geopolymer using a single activator was 9.5 MPa, the specimen made with a complex composition of alkali activator had compressive strength of 2~5 times higher. In addition, the lightweight geopolymer with pre-curing process showed a compressive strength value of 18~48 % higher than that of specimen made with no precuring process. In this study, by using a complex activator and a pre-curing process. the maximum compressive strength of lightweight geopolymer was obtained as 40 MPa (The specimen was aged for 3 days and had density of $1.83g/cm^3$), which is comparable to cement concrete. By analyzing the crystal phase and microstructure of geopolymers obtained in this study using by XRD and SEM, respectively, it was confirmed that the flower-bud-like zeolite crystal was homogeneously distributed on the surface of the C-S-H gel (sodium silicate hydrate gel) in the geopolymer.

Removal Improvement in Water Treatment Plant for Occurrence of Diatoms (Synedra sp.) in the Nakdong River (낙동강유역 상수원의 규조류 발생에 따른 정수장에서 제거율 향상 방안)

  • Kim, Min-Chai;Kim, Ji-Hoon;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.29-34
    • /
    • 2014
  • This study was conducted to investigate removal characteristics for Synedra sp. and filter run time (FRT) according to the cell length in the Nakdong River. When used alone flocculent, the removal efficiency for Synedra tenera (around $100{\mu}m$) was constant with 90.9~94.4%, while Synedra acus (around $300{\mu}m$) had the lower removal efficiency as 60~70%. $PACS_2$ and PAC showed 5~6% higher removal for S. acus than others (HiB and LAS). When added coagulant aid, loess had no effect and also needed more amount of flocculent. Sodium Silicate increased the removal rate by max 10.6%. On the other hand, 2.5 mg/L of Polyamine showed 96.9% removal efficiency for S. acus increasing up to 25% more than $PACS_2$ alone. In the effect of water temperature, the removal for S. acus at $15^{\circ}C$ were 6% higher than at $4^{\circ}C$. There was no significant correlation between the removal efficiencys of turbidity and S. acus. The results of this study was similar to the actual water treatment process's removal characteristics for Synedra sp. depending on the cell length and temperature. In the actual process, the numbers of Synedra in settled water was established natural logarithm function with the filter run time (FRT), so we can predict FRT as Synedra numbers.

Chemical Effects on Head Loss across Containment Sump Strainer under Post-LOCA Environment (LOCA이후 환경에서 원자로건물집수조 여과기의 수두손실에 대한 화학적 영향)

  • Ku, Hee-Kwon;Jung, Bum-Young;Hong, Kwang;Jeong, Eun-Sun;Jung, Hyun-Jun;Park, Byung-Gi;Rhee, In-Hyoung;Park, Jong-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3260-3268
    • /
    • 2009
  • A test apparatus has been fabricated to simulate chemical effect on head loss through a strainer in a pressurized water reactor (PWR) containment water pool after a loss of coolant accident (LOCA). Tests were conducted under condition of same ratio of strainer surface area to water volume between the test appratus and the containment sump. A series of tests have been performed to investigate the effects of spray, existence of calcium-silicate with tri-sodium phosphate (TSP), and composition of materials. The results showed that head loss across the chemical bed with even a small amount of calcium-silicate insulation instantaneously increased as soon as TSP was added to the test solution. Also, the head loss across the test screen is strongly affected by spray duration and is increased rapidly at the early stage, because of high dissolution and precipitation of aluminum and zinc. After passivation of aluminum and zinc by corrosion, the head loss increase is much slowed down and is mainly induced by materials such as calcium, silicon, and magnesium leached from NUKONTM and concrete. Furthermore, it is newly found that the spay buffer agent, tri-sodium phosphate, to form protective coating on the aluminum surface and reduce aluminum leaching is not effective for a large amount of aluminum and a long spray.

New Smoke Risk Assessment on Wood Treated with Silicone Compound (실리콘 화합물로 처리된 목재의 새로운 연기위험성 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.16-27
    • /
    • 2019
  • A burning test was conducted on the smoke and combustion gases generated from cypress wood treated with sodium silicate, 3-aminopropyltrimethoxysilane sol, 3-(2-aminoethylamino)propylmethyldimethoxysilane sol, and 3-(2-aminoethylamino) propyltrimethoxysilane sol. The silicone compound sol was applied to each of the cypress wood specimens three times with a brush. The smoke and combustion generation gas were analyzed using a cone calorimeter (ISO 5660-1) and the smoke was also evaluated by applying new smoke risk assessment method. The smoke performance index (SPI) of the cypress treated with silicone compound increased 1.66 to 8.42 times and the smoke growth index (SGI) was 11.8 to 88.2%, respectively. The smoke intensity (SI) is expected to be 1.0~50.5% lower than that of the base specimens, resulting in lower smoke and fire hazards. The third maximum carbon monoxide (COpeak) concentration of the specimens treated with silicone compounds was 22.5~33.3% lower than that of the base specimens. On the other hand, it produced potentially fatal toxicity that was 1.48~1.72 times higher than the US Occupational Safety and Health Administration (OSHA) acceptance standard (PEL). Cypress wood itself produced a high carbon monoxide concentration, but the silicon compound played a role in reducing this level.

Effect of Alkaline Activator and Curing Condition on the Compressive Strength of Cementless Fly Ash Based Alkali-Activated Mortar (시멘트를 사용(使用)하지 않은 플라이애시 알칼리 활성(活性) 모르타르의 압축강도(壓縮强度)에 미치는 알칼리 활성제(活性劑) 및 양생조건(養生條件)의 영향(影響))

  • Kang, Hyun-Jin;Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kim, Sung-Wook;Lee, Jang-Hwa
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.39-50
    • /
    • 2009
  • Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of fly ash, a by-products from thermal power plant to partially replace the cement in concrete are gathering momentum. But most of fly ash is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the source of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effective in the reduction of $CO_2$ gas. In this study, we investigated the influence of the compressive strength of mortar on alkaline activator and curing condition in order to develop cementless fly ash based alkali-activated concrete. In view of the results, we found out that it was possible for us to make alkali-activated mortar with 70MPa at the age of 28days by using alkaline activator manufactured as 1:1 the mass ratio of 9M NaOH and sodium silicate and applying the atmospheric curing after high temperature at $60^{\circ}C$ for 48hours.

Study on Recovery of Au from Flotation Tailing of Gold (금(金) 浮選(부선) 광미(鑛尾)로부터 금(金)의 회수(回收)에 관한 연구(硏究))

  • Shin, Seung-Han;Kang, Hyun-Ho;Hong, Jong-Won;Lee, Jin-Soo;Park, Je-Hyun;Han, Oh-Hyung
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.61-69
    • /
    • 2010
  • S.M.C (DSME), only operating gold mine in Korea, is processing about 160 ton/day to recover gold and more than 150 ton/day of tailing is produced. Some portion of the tailings are used as a filler material after drying, but most of them are stored on the tailing dam. As a result of chemical analysis by a fire assay method, it contained Au 1.5~2.0 g/ton and 225~300 g per day of gold is getting discarded. It is urgent to develop a technology to recover and reutilize Au. In the present study, flotation tests were carried out to recovery gold for the tailings. Test results show that products with gold grade 21.31 g/ton(Au grade) and 62.73% (Au recovery) were obtained under the optimal conditions including KAX addition rate 97.2 g/ton, frother AF 65 (0.248 l/ton) and depressant sodium silicate (4 kg/ton), it's possible to recover one of the most valuable metal Au, by re-feeding to rougher flotation.

A Study on Thermal Insulation Property and Thermal Crack Protection for Expanded Perlite Inorganic Composites (팽창진주암 무기복합재에서의 단열성능 및 열크랙 방지에 관한 연구)

  • Ahn, WonSool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3286-3291
    • /
    • 2014
  • A study on the crack protection and thermal insulation properties of the expanded perlite inorganic composites was performed. Mixed expanded perlite with a water glass was stabilized for 24 hrs at room temperature in the mold and, thereafter, converted into a massive foamed body through complete drying process at $150^{\circ}C$. Aluminum phosphate and micron size mica powder were used as a reaction accelerator and a stabilizer for thermal crack, respectively. Especially, use of mica exhibited a remarkable effect on the protection of thermal crack at higher temperature over $500^{\circ}C$, and thermal conductivity of the composites was enhanced with higher perlite contents, showing ca. 0.09 W/mK for the sample of 100/200/10/1.5 water glass/perlite/mica/Al phosphate by weight. A severe dimensional deformation of the composite materials was observed over $600^{\circ}C$, however, showing a temperature limitation for a practical application. The facts were considered as the results from the glass transition temperature of the water glass, of which main component is sodium silicate.

Heat Risk Assessment of Wood Coated with Silicone Compounds (실리콘 화합물로 도포된 목재의 열위험성 평가)

  • Jin, Eui;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.9-19
    • /
    • 2019
  • Experiments on the combustion characteristics of untreated wood specimens and those treated with four types of silicone compounds were carried out using a cone calorimeter according to the ISO 5660-1 standard. 3-Aminopropyltrimethoxysilane (APTMS), 3-(2-aminoethylamino) propylmethyldimethoxysilane (AEAPMDMS), and 3-(2-aminoethylamino) propyltrimethoxysilane (AEAPTMS) were used as the silane compounds. The flame retardants were synthesized with sodium silicate and amino silane compounds. The measured time to ignition after combustion at an external heat flux of $50kW/m^2$ was 9 s to 11 s. Time to ignition was marked with a delayed value in the 3 s to 5 s range. The peak heat release rate ($HRR_{peak}$) was reduced by 5 to 20% compared with the uncoated specimen, and AEAPMDMS showed the highest initial fire risk. The total heat release (THR) was decreased by 1 to 22%. Compared to the untreated specimen, the fire performance index (FPI) of the specimens coated with silicone sol compounds increased by 1.5 to 2.2 fold. The fire growth index (FGI) of the AEAPMDMS specimen was increased by 30% and the others were decreased by 93 to 94%. Therefore, the fire risk of wood coated with silicone compounds was improved in terms of the heat risk properties.

Effect of Polymer Post-treatment on the Durability of 3D-printed Cement Composites (3D 프린터로 출력된 시멘트 복합체의 내구성에 미치는 폴리머 후처리의 영향)

  • Seo, Ji-Seok;Hyun, Chang-Jin;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.20-29
    • /
    • 2022
  • In this study, in order to improve the durability of the cement composite printed with the ME type 3D printer, PDMS, sodium silicate, and a surface hardener were employed. Post-treatment was performed on 3D-printed cement composite by coating after immersion, and the degree of improvement in durability was evaluated. As a result, in all evaluations, the durability performances of the post-processed specimens were improved compared to those of the plain specimens. Water absorption resistance, chloride penetration resistance, and carbonation resistance of the PDMS treated specimens were improved by 36.3 %, 77.1 %, and 50.4 % when compared to plain specimens. Freeze-thaw resistance of the specimens treated with sodium silicate was found to be the most excellent, with an average enhancement of 47.5% compared to plain specimens. It was found that PDMS was the most efficient post-treatment materials for 3D-printed cement composite. However, as suggested in this study, the post-treatment method by coating after immersion may not be applicable to cement composite structures printed with a 3D printer in field. Therefore, a follow-up study needs to be preformed on the durability enhancing materials suitable for 3D printing.

Silicon Supply through Subirrigation System Alleviates High Temperature Stress in Poinsettia by Enhancing Photosynthetic Rate (저면공급한 규소에 의한 포인세티아의 광합성 능력 향상과 고온 스트레스 경감)

  • Son, Moon Sook;Park, Yoo Gyeong;Sivanesan, Iyyakkannu;Ko, Chung Ho;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.860-868
    • /
    • 2015
  • The effect of Si supplied during plant cultivation on tolerance to high temperature stress in Euphorbia pulcherrima Willd. 'Ichiban' was investigated. Rooted cuttings were transplanted into 10-cm pots and a complete nutrient solution, containing 0 or $50mg{\cdot}L^{-1}$ Si as either $K_2SiO_3$, $Na_2SiO_3$, or $CaSiO_3$, was supplied through subirrigation or weekly foliar applications. After two months of cultivation, plants were placed in an environment-controlled chamber and subjected to $35{\pm}1^{\circ}C$ (high temperature) conditions for 18 days. Enhanced specific activities of enzymatic antioxidants (APX) and suppressed specific activities of non-enzymatic antioxidants (ELP) were observed in the high temperature-stressed plants with Si application. The Fv/Fm (maximum quantum yield of photosystem II), photosynthetic rate, and Si contents in the shoot increased in the treatments of $K_2SiO_3$ and $Na_2SiO_3$ supplied through subirrigation. The Si-treated plants had more tolerance of high temperature stress than the control plants. Of the Si sources and application methods tested, $K_2SiO_3$ and $Na_2SiO_3$ supplied through subirrigation were found to be the most effective in enhancing tolerance to high temperature stress.