• Title/Summary/Keyword: Sodium Glycinate

Search Result 5, Processing Time 0.031 seconds

Determination and Calculation of Physical Properties for Sodium Glycinate as a CO2 Absorbent (CO2 제거용 흡착제 Sodium Glycinate의 물성측정과 추산)

  • Park, So-Jin;Jang, Gyeong-Ryong;Park, In Hwan
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.277-283
    • /
    • 2006
  • Aqueous solution of sodium glycinate was checked as a suitable $CO_2$ absorbent from the flu gas in the thermal power plant. For this purpose, solubility, vapor pressure, latent heat of vaporization and thermal conductivity were determined for pure and aqueous solution of sodium glycinate. The solubility of sodium glycinate in the solvent, 25 g of $H_2O$, was increased with increasing the temperature and their relation was represented as a first order equation of y = 0.3471x + 20.993. The vapor pressure for 10 wt% to 60 wt% of aqueous sodium glycinate solution were determined and the latent heat of vaporization of each aqueous solution was calculated from measured vapor pressure using Clausius-Clapeyron equation. Besides, thermal conductivity of sodium glycinate powder was also determined and it was $1.0933kcal/m{\cdot}hr{\cdot}^{\circ}C$.

Absorption Characteristics of Aqueous Sodium Glycinate Solution with Carbon Dioxide and Its Mechanistic Analysis (Sodium Glycinate 수용액의 CO$_2$ 흡수특성 및 반응 메커니즘 해석)

  • Shim, Jae-Goo;Kim, Jun-Han;Jang, Kyung-Ryong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.430-438
    • /
    • 2008
  • The experiments for separation and recovery of CO$_2$ were conducted by aqueous sodium glycinate solution, which is one of the amino acid salts, as an absorbent of CO$_2$ in this study. Absorption capacities of aqueous MEA and sodium glycinate solution according to partial pressure of CO$_2$ were evaluated by vapor-liquid equilibrium tests of 20 wt% and 30 wt% above-mentioned absorbents, respectively. In addition, the pilot scale(2 t-CO$_2$/day) experiments based on prior results were carried out. As a result, CO$_2$ removal efficiency of aqueous sodium glycinate solution was lower than that of aqueous MEA solution. This phenomenon means that CO$_2$ removal efficiency of aqueous sodium glycinate solution mainly depends on its molecular structure. Consequently, the first application of certain amino acid salt, as an absorbent of CO$_2$, to pilot plant of 2 t-CO$_2$/day scale was carried out in our country.

CO2 Absorption by Alkali-modified Amino Acid Salts (알칼리금속을 함침시킨 아미노산 염 수용액의 이산화탄소 흡수특성 연구)

  • Lim, Yun-Hui;Jo, Young-Min;Park, Joon-Seok
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.526-531
    • /
    • 2011
  • The present study attempted to impregnate alkali metals to amino acid in order to improve $CO_2$ absorption capacity. A used amino acid was glycine, of which pH increased up to about 11 with the addition of alkalies. $CO_2$ absorption capacity of amino acid salts was evaluated in a batch and a continuous process. The absorption capacity appeared in turns as; Sodium Glycinate ${\geq}$ Lithium Glycinate > Potassium Glycinate. Amino acid salts showed lower absolute capacity of $CO_2$ absorption than primary amine (Monoethanolamine) at $20^{\circ}C$. In a continuous absorption with 10% $CO_2$ flow, the increasing the reaction temperature, the increasing rate of absorption for amino and was higher that of than amino absorbent.

Characterization of Glycine Metal Salts for $CO_2$ Absorption (이산화탄소 흡수를 위한 글리신 금속염의 특성 연구)

  • Lim, Yun-Hui;Park, Young Koo;Jo, Young-Min
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.284-288
    • /
    • 2012
  • This work deals with the chemical characterization of glycine aqueous solution in $CO_2$ absorption. Three alkali elements were impregnated into the glycine in order to facilitate the formation of amino functionalities. The analysis by IR revealed the transformation of ammonium ions to the amino group. In addition, the NMR analysis showed that the substitution of metal cations to the chemical shift of hydrogen and carbon atoms in glycine; in order of lithium glycinate, sodium glycinate and potassium glycinate depending on the electro negativity. Meanwhile, the $CO_2$ absorption at room temperature was the highest in primary amine solution, but at the increasing temperature sodium glycinate could capture more $CO_2$ than that of the pure amine solution.

Synthesis of Some New Cytidine and Inosine Derivatives

  • Youssif, Shaker;Mohamed, Enaiat K.;Sayed Ahmed, Ahmed F.;Ghoneim, Amira A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.2021-2026
    • /
    • 2005
  • The oxidation of cytidine 1 and inosine 5 by sodium metaperiodate followed by the reaction of the product with $CH_3I$ in NaOH afforded 2',4'-dihydroxyhexopyranosyl derivatives 2 and 14 respectively. The reaction of thiophene-2-carboxylic acid or furfural with cytidine were taken place via cycloaddition afforded adducts 3 and 4 respectivily. The bromination of inosine 5 or its 2',3'-O-isopropylidine inosine 6 led to the formation of 8-bromoanalogue 7 and 8, respectively. The reaction of 8-bromo-2',3'-O-isopropylidine inosine (8) with ethylglycinate hydrochloride afforded 8-ethoxycarbonylmethylaminoinosine 9. The alkylation of the compound 6 with urea led to the formation of 3-carbonylaminoinosine 10. The oxidation of 6 with DCC afforded 4'-formyl derivative 11, which on reaction with ethyl glycinate hydrochloride followed by reaction with sodium cyanoborohydride afforded 12, while the treatment of dialdehyde inosine 13 with ethyl cyanoacetate in the presence of 0.5 N NaOH afforded compound 15.