Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.5.526

CO2 Absorption by Alkali-modified Amino Acid Salts  

Lim, Yun-Hui (Department of Applied Environmental Science, Center for Environmental Studies, Kyung Hee University)
Jo, Young-Min (Department of Applied Environmental Science, Center for Environmental Studies, Kyung Hee University)
Park, Joon-Seok (Department of Environmental Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.22, no.5, 2011 , pp. 526-531 More about this Journal
Abstract
The present study attempted to impregnate alkali metals to amino acid in order to improve $CO_2$ absorption capacity. A used amino acid was glycine, of which pH increased up to about 11 with the addition of alkalies. $CO_2$ absorption capacity of amino acid salts was evaluated in a batch and a continuous process. The absorption capacity appeared in turns as; Sodium Glycinate ${\geq}$ Lithium Glycinate > Potassium Glycinate. Amino acid salts showed lower absolute capacity of $CO_2$ absorption than primary amine (Monoethanolamine) at $20^{\circ}C$. In a continuous absorption with 10% $CO_2$ flow, the increasing the reaction temperature, the increasing rate of absorption for amino and was higher that of than amino absorbent.
Keywords
GHG; $CO_2$; amino acid; metal salt;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 W. J. Jang, Y. I. Yoon, S. D. Park, Y. W. Rhee, and I. H. Baek, J. Korean Ind. Eng. Chem., 19, 645 (2008).
2 W. J. Ryu, K. H. Han, W. K. Choi, J. S. Lee, and S. J. Park, Korean Chem. Eng. Res., 47, 795 (2009).
3 Y. H. Lim, K. M. Lee, H. S. Lee, and Y. M. Jo, J. KOSAE, 26, 286 (2010).   DOI
4 S. Ma'mun, H. F. Svendsen, K. A. Hoff, and O. Juliussen, Energy Convers. Manage., 48, 251 (2007).   DOI   ScienceOn
5 I. H. Lee, S. I. Kim, and J. Y. Park, J. Korean Ind. Eng. Chem., 18, 239 (2007).
6 T. Pintola, P. Tontiwachwuthikul, and A. Meisen, Gas Sep. Purif., 7, 47 (1993).   DOI   ScienceOn
7 Y. M. Cho, S. C. Nam, Y. I. Yoon, S. J. Moon, and I. H. Baek, Appl. Chem. Eng., 21, 195 (2010).
8 H. J. Song, S. M. Lee, H. C. Song, S. W. Ahn, and J. W. Park, J. Energy Eng., 14, 219 (2005).
9 B. R. Strazisar, R. R. Anderson, and C. M. White, Energy Fuels, 17, 1034 (2003).   DOI   ScienceOn
10 U. E. Aronu, H. F. Svendsen, and K. A. Hoff, Int. J. Greenhouse Gas Control, 4, 771 (2010).   DOI   ScienceOn
11 P. S. Kumar, J. A. Hogendoorn, G. F. Versteeg, and P. H. M. Feron, AlChE Journal, 49, 203 (2003).   DOI   ScienceOn
12 H. J. Song, S. M. Lee, J. H. Lee, J. W. Park, K. R. Jang, J. G. Shim, and J. H. Kim, Korean Soc. Environ. Eng., 31, 505 (2009).
13 J. V. Holst, G. F. Versteeg, D. W. F. Brilman, and J. A. Hogendoorn, Chem. Eng. Sci., 64, 59 (2009).   DOI   ScienceOn
14 S. K. Oh, Y. W. Rhee, S. C. Nam, Y. I. Yoon, and Y. E. Kim, J. Energy Eng., 17, 251 (2008).
15 T. McKee and J. R. McKee, Biochemistry, 3/E, 80pp, Life Science Publishing Co. (2004).
16 L. G. Wade, Jr., Organic Chemistry, 1299pp, Prentice Hall (2001).
17 H. W. Ko and H. K. Juang, J. Appl. Electrochem., 13, 725 (1983).   DOI   ScienceOn
18 R. J. Hook, Ind. Eng. Chem. Res., 36, 1779 (1997).   DOI   ScienceOn
19 J. V. Holst, S. R. A. Kersten, and K. J. A. Hogendoorn, J. Chem. Eng. Data, 53, 1286 (2008).   DOI   ScienceOn
20 C. Mathonat, V. Majer, A. E. Mather, and J. P. E. Grolier, Fluid Phase Equilib., 140, 170 (1997).
21 S. W. Ahn, Y. K. Kim, H. C. Song, and J. W. Park, Energy Eng. J., 6, 203 (1997).