• Title/Summary/Keyword: Society of Civil Engineers

Search Result 2,032, Processing Time 0.031 seconds

Experimental study on Run-up of S-berm-Typed Rubble Mound Breakwaters (S-소단 경사식 방파제에서의 처오름에 대한 실험연구)

  • Ahn, Tae-Jun;Kim, Young-Taek;Park, Seung-Hyun;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.147-153
    • /
    • 2006
  • In this study, the run-up of water waves on slopes of s-berm breakwaters was investigated by performing a series of hydraulic experiments. The run-up height was analyzed in detail by using the effects of wave steepness and surf similarity parameter. In general, the run-up heights were decreased as the height and the width of berm were increased. However, the variation of run-up height was small for change of wave steepness and surf similarity parameter.

Soil Related Parameters Assessment Comparing Runoff Analysis using Harmonized World Soil Database (HWSD) and Detailed Soil Map (HWSD와 정밀토양도를 이용한 유출해석시 토양 매개변수 특성 비교 평가)

  • Choi, Yun Seok;Jung, Young Hun;Kim, Joo Hun;Kim, Kyung-Tak
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.57-66
    • /
    • 2016
  • Harmonized World Soil Database (HWSD) including the global soil information has been implemented to the runoff analysis in many watersheds of the world. However, its accuracy can be a critical issue in the modeling because of the limitation the low resolution reflecting the physical properties of soil in a watershed. Accordingly, this study attempted to assess the effect of HWSD in modeling by comparing parameters of the rainfall-runoff model using HWSD with the detailed soil map. For this, Grid based Rainfall-runoff Model (GRM) was employed in the Hyangseok watershed. The results showed that both of two soil maps in the rainfall-runoff model are able to well capture the observed runoff. However, compared with the detailed soil map, HWSD produced more uncertainty in the GRM parameters related to soil depth and hydraulic conductivity during the calibrations than the detailed soil map. Therefore, the uncertainty from the limited information on soil texture in HWSD should be considered for better calibration of a rainfall-runoff model.

Security of Upland Irrigation Water through the Effective Storage Management of Irrigation Dams (관개용 댐의 효율적 저수관리를 통한 밭 관개 용수 확보)

  • Lee Joo-Yong;Kim Sun-Joo;Kim Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.13-23
    • /
    • 2006
  • In Korea, upland irrigation generally depends on the ground water or natural rainfall since irrigation water supplied from dams is mainly used for paddy irrigation, and only limited amount of irrigation water is supplied to the upland area. For the stable security of upland irrigation water, storage level of irrigation dams was simulated by the periods. A year was divided into 4 periods considering the irrigation characteristics. Through the periodical management of storage level, water utilization efficiency in irrigation dams could be enhanced and it makes available to secure extra available water from existing dams without new development of water resources. Two study areas, Seongju and Donghwa dam, were selected for this study. Runoff from the watersheds was simulated by the modified tank model and the irrigation water to upland crops was calculated by the Penman-Monteith method. The analyzed results showed that relatively sufficient extra available water could be secured for the main upland crops in Seongju area. In case of Donghwa area, water supply to non-irrigated upland was possible in normal years but extra water was necessary in drought years such as 1998 and 2001.

Hybrid Element Method for Dynamic Responses of Three-Dimensional Offshore Structures (복합요소법을 이용한 3-차원 해양구조물의 동적응답)

  • Lee, Tae-Gab;Park, Woo-Sun;Pyun, Chong-Kun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.3
    • /
    • pp.152-161
    • /
    • 1990
  • In this paper, a hybrid element method(HEM) for the evaluation of the hydrodynamic responses of arbitrary-shaped offshore structures is studied. The hydrodynamic pressure forces are assumed to be inertially dominated, and viscous effects are neglected. The mathematical formulation procedure of the hybrid element method with the analytical eigenseries solution is established systematically. The computer program based on the HEM has been developed, and applied to solving the wave diffraction and radiation problems for arbitrary shaped structures. From comparisons of the results obtained by using the other avaliable solution methods, the method for the evaluation of the hydrodynamic forces using the HEM and the computer program developed here have been proved to be valid.

  • PDF

Analysis of Multi-directional Random Waves Propagating over Multi Arrayed Impermeable Submerged Breakwater (다열 불투과성 수중방파제를 통과하는 다방향 불규칙파랑의 해석)

  • Jung, Jae-Sang;Kang, Kyu-Young;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.29-37
    • /
    • 2007
  • In this study, transmission and reflection of multi-directional random waves propagating over impermeable submerged breakwaters are calculated by using eigenfunction expansion method. A series of mutiderectional random waves is generated by using the Bretschneider-Mitsuyasu frequency and Mitsuyasu type directional spectrum. Strong reflection is occurred at the Bragg reflection condition of the peak frequency. If the row of breakwaters is fixed at 3 and the relative height of breakwater is fixed at 0.6, more than 25% of incident wave energy is reflected to offshore. It is also found that the reflection of directionally spreading random waves increases as the maximum spreading parameter $s_{max}$ increases.

사다리형태로 변화하는 지형 위를 통과하는 파군에 의한 장파의 생성 (Long Waves Generated by Wave Groups over Trapezoidally Varying Topography)

  • Cho, Yong-Sik;Lee, Jin-Woo;Jung, Tae-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.212-218
    • /
    • 2008
  • A possible source of resonant problems in a harbor is long waves generated by incident wave groups. The analytical solutions of the governing equations of second-order long waves derived using a multiple-scale perturbation method consist of the locked and free long waves. The locked long waves propagate at some group velocity, whereas the free long waves propagate at the shallow-water speed. To study the resonance of free long waves, a trapezoidally varying topography is employed. With certain combinations of incident angle, water depth, and ambient current velocity, free long waves can be trapped and resonated.

Characteristics of Suspended Sediment Transport in Wave and Current Co-Existing System (파랑과 흐름이 공존하는 영역에서의 평형 및 비평형 부유사이동특성)

  • ;Ichiro Deguchi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.4
    • /
    • pp.209-216
    • /
    • 1991
  • Characteristics of suspended sediment concentration of equilibrium and non-equilibrium state caused by waves and currents are investigated by conducting a movable bed experiments in wave tanks. In the region where a downward flux of suspended sediment is larger than a upward flux, time-averaged vertical distribution of suspended sediment does not indicate logarithmic distribution. A new numerical procedure for predicting time-averaged suspended sediment concentration is also proposed based on two-dimensional advective diffusion equation by applying a split-operator approach. It is found that the unposed procedure can predict measured distribution of suspended sediment satisfactorily.

  • PDF

Reduction of Run-up Height of Vertical Structure using Bottom Topography (해저 지형을 이용한 연직 구조물의 처오름 감소)

  • Jung, Tae-Hwa;King, Gyu-Young;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.436-445
    • /
    • 2007
  • An analytical solution which can be applied to an arbitrarily varying topography is derived by using the continuity and momentum equations. Applying the fact that the solution of the governing equation is expressed as Bessel function in such case that the water depth varies linearly, the present solution is obtained by assuming the water depth as series of constant slope. The present solution is verified by comparing with analytical solution derived previously and investigates the effects of bottom topography to run-up height of vertical structure.

Numerical Analyses of 2011 East Japan Tsunami Propagation towards Korean Peninsula (2011년 동일본 지진해일의 한반도 전파 수치해석)

  • Bae, Jae-Seok;Cho, Young-Joon;Kwon, Seok-Jae;Yoon, Sung-Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.66-76
    • /
    • 2012
  • The effect of bathymetry near the south sea area of Korea on the propagation of 2011 East Japan Tsunami is analyzed based on the numerical simulation using the finite difference dispersion-correction model. It is found that the bathymetry from the source to Korean Peninsula, such as Nankai Trough, Ryukyu Islands and the topographical lens in the East China Sea, plays an important role to reduce the tsunami height along the south coast of Korea. The mechanism involved in the transformation of tsunamis over those topographies is discussed.

Spatio-Temporal Resolution Analysis based on Landsat/AMSR2 Soil Moisture (Landsat/AMSR2 기반 토양수분의 시공간적 해상도 분석)

  • Lee, Taehwa;Kim, Sangwoo;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.51-60
    • /
    • 2020
  • The purpose of this study is to determine the spatial and temporal resolutions that can represent land surface characteristics comprised of various land use using Landsat/AMSR2-based soil moisture data. We estimated the Landsat (30 m×30 m)-based soil moisture values using the soil moisture regression model. Then, the Landsat (30 m×30 m)-based soil moisture (reference values) were resampled to the relatively coarse resolutions from 1 km to 4 km, respectively. Comparing the reference values to the resampled soil moisture values, we confirmed that uncertainties were increased with the spatial resolutions of 2 km~4 km indicating that the spatial resolution of 1 km×1 km is required to represent the complicated land surface. Also, the AMSR2 soil moisture values have less uncertainties compared to SMAP data with the temporal resolution of 1~2 days. Thus, our findings can be useful for various areas such as agriculture, hydrology, forest, etc.