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Long Waves Generated by Wave Groups over Trapezoidally Varying Topography
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Abstract : A possible source of resonant problems in a harbor is long waves generated by incident wave groups.
The analytical solutions of the governing equations of second-order long waves derived using a multiple-scale
perturbation method consist of the locked and free long waves. The locked long waves propagate at some group
velocity, whereas the free long waves propagate at the shallow-water speed. To study the resonance of free long
waves, a trapezoidally varying topography is employed. With certain combinations of incident angle, water
depth, and ambient current velocity, free long waves can be trapped and resonated.
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1. Introduction

When a train of modulated wave groups propagates over
a slowly varying topography and ambient current field, two
types of second-order long waves can be generated due to
refraction and shoaling: locked long waves propagate with
the wave envelopes at some group velocity of carrier
(short) waves, and free long waves propagate at the shal-
low-water wave speed, +/gh (Liu et al., 1992). Because the
governing equations of long waves generated by wave
groups are represented using the second-order terms given
in Stokes’ wave theory, they are called second-order long
waves: They are of order O((ka)2) , where k is the
wavenumber and a is the amplitude. These locked and free
long waves, although second-order quantities, may play
significant roles in many coastal engineering problems,

such as harbor resonance and coastal processes, if they are
trapped and resonated in a nearshore area (Liu et al., 1992).

It has been reported that the second-order long waves
may be related to generation of nearshore bar (Symonds
and Bowen, 1984; Roelvink and Stive, 1989; Liu and Cho,
1993) and the long-period oscillations in a harbor (Mei and
Agnon, 1989; Liu et al, 1990). The second-order long
waves are also related to the mean free surface oscillation,
the mean transport velocity, and the slowly varying drift
force (Agnon and Mei, 1985; Zhou and Liu, 1987). Liu et
al. (1992) investigated the propagation and trapping of
obliquely incident wave groups over a trench with ambient
currents.

In this study, the possibility of resonance from free long
waves propagating over a trapezoidally varying topography
is investigated. In the following section, the derivation of
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the governing equations of second-order long waves is
summarized and the analytical solutions of locked and free
long waves are introduced. In section 3, two numerical
examples of the variation of amplitude of free long waves
are given, and the possibility of the resonance of trapped
free long waves is discussed. Finally, concluding remarks
are made in section 4.

2. Governing Equations

It is assumed that fluid is inviscid and that flow is irrota-
tional and incompressible. The fluid motions are hence
governed by the Laplace equation:

V2= 0,-h(x,y)<z< (5,0, 1) )

Here, V° is the Laplacian operator defined by V= ¥
X2, dy?, J*dz?), @ is the velocity potential, 4 is the
depth, and Jis the free surface displacement (see Figure
1). Figure 1 is a schematic of the domain and coordinate
system.

The bottom boundary condition is given by:

o T = =0, 2=h(xy) e)

The kinematic and dynamic free surface boundary con-
ditions can be applied to the free surface of fluid. By com-
bining these boundary conditions, the combined free
surface boundary condition can written as:

0”2¢ 2D IR, 1o 3R
L L+ 2V =0, z= Wt 3
t2 gé’z &t|u| 2“ |ul , 2= 4,0, 1) 3

Fig. 1. A definitive sketch of the domain.

Here, g is the gravitational acceleration and % is the
velocity vector, 7= @D/ Ox, 0D/ Oy, 0D/Ez) .

The order of the free surface displacement is taken to be
O(ka) = O(p), where B is some small parameter. The
combined free surface boundary condition given in Eq. (3)
can then be expanded using the Taylor series (Mei, 1989):

(1+egeiedy )@[p Zf)

+(1e¢ 2)( 2l +La-viar) - @

The length and time scales of the second-order long
waves are much longer than those of the short waves. Thus,
the slow variables for the wave groups and long waves can
be defined as:

x1=ﬂx’y1=ﬂy’t1=ﬁt (5)

in which x, y, and ¢ vary quickly in space and time, whe-
reas xi, yi, and #; vary slowly.

The velocity potential, &, and free surface displacement,
¢, are expanded in terms of the small parameter, 3, by using
the perturbation method. That is,

o= 3 ' 5 0"y zxup,1)exp—imat)  (6)

n=1 m=_n

¢= Elﬂ" 5 {2, )exp(-imon)  (7)

The superscripts # and m are the number of orders and
harmonics, respectively, in Eqs. (6) and (7). The governing
equations and boundary conditions of each order (n=1, 2,
3) can be derived by substituting the expansion (6) and (7)
into Eqgs. (1) and (4) (Cho et al., 1996). Detailed descrip-
tions of the perturbation method can be found in Bender
and Orszag (1987).

The mean free surface displacement, {9, is represented
as (Liu et al., 1992):

@o_ 1 8 ,a.n o (1,-1) & LD 4 4 (1,1)2]
-_ o 9 < \v/
¢ g[atj g(¢ 57 ) v
®

in which * represents the complex conjugate.
The equation for the velocity potential is represented as:

Z (hﬁ_x,¢(10)) é’i(ﬁy1¢(10)) 1;(2,0)
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_ i) 2 a.nd a-1 1,1) G (1,-1)
_2{571(¢ A U T }(9)

The governing equations of second-order long waves
can be obtained by substituting 8¢ into (9) and also by
substituting the absolute frequency @ for o+k-V, where
_I}(xl, ¥1,£) = (1, v) is the ambient current and the governing
equations can be rewritten as (Cho et al., 1996) :

(ﬁ_flﬁf’- V,)¢“*°’—gv1 (WY, 60)= (§+?/. Vl)
1

{("—2¢“'”2¢“")‘+*)—|v¢“’”|2}
g oz
+V1.(io_¢(1,l)A¢(1,1)’+ *) (10)

in which V, =(a0x,,d/dy,) and 'E)he_) intrinsic angular
frequency is represented as o= w—k- V.

By introducing the notation of ¢(1’0) = ¥, the dimen-
sionless governing equations of second-order long waves
are (Liu et al., 1992):

o A +2 2
—+V= Q,-K
(5’1+ 5)’1) v [ 0”x1 ) kiAl( 5N

1 1
- — i _ 4k
(w50 olitkan s Kn=Qule* - aD)
in which, Cg; and K; represent the velocity of wave
groups and wave number of the wave envelope, respec-
tively. The amplitude of the wave groups can be expressed as
(Liu et al., 1992):

A = agexp{i(Kx +Ky,— Q1) }
+agbexp{-i(K,x,+K,y,-Qt1)} (12)

where ao and aob represent the amplitudes of the short
waves with slightly different frequencies.

If the long waves are unsteady, the velocity potential of
long waves is:

/= 2 W) expl2i(K,p, - Qa1+ (13)

Substituting Eq. (13) into Eq. (11) gives two classes of
solutions. The first solutions obtained from the homogene-
ous equation are the free long waves, where as the second
solutions obtained from the non-homogeneous equation are
the locked long waves.

The reflected and transmitted velocity potentials of the
locked long waves can be written as:

ghy, = ik(Qy— KV)RR (1 1

e e K 1y —KCh) 2k OCg)
exp[-2i(K,x,)] (14

¥y, - HQKPTT (L 1 1)

eXP[Zt(Kxxl)] (15)

where R* and T* are the reflection and transmission coef-
ficients of short waves with slightly different frequen-
cies, which can be determined by using the eigenfunction
expansion method (Liu et al., 1992).

The reflected and transmitted velocity potentials of the
free long waves can be written as:

(¥ = Erexp(2iAxy), (¥)r=Egexp(-2idx;) (16)
1

[
in which Ez and Er are the reflected and transmitted
amplitudes of the free long waves. When A is real, (¥)r is
a propagating wave. On the other hand, when A is imagi-
nary, (¥)r becomes an evanescent mode. When A is zero,
(¥)r is constant and free long waves are trapped.

The free surface displacements of the locked and free
long waves can be written as:

+ 12, 2
¢ R
(=L@ omzit -y ELED

16sinh’kh
# R'R” ( Knd (QO~KyV)2k)
H(QyK, V) —K*h)\2sinh’kh €&
exp(-2iK x;) (18)
y |+t
(&= %(fT)Lexp[Zi(K}yl—Qotl)]_%+*
5T P ( K2h0'2 +(QO—KyV)2k]
@ 4((QK, ¥y — K*h)\2sinh’kh oCg
exp(—2iK x,) (19)

(=20 QK NWr, (E)r=2i QKW )F
(20)
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The critical incident angle, a.., at which the free long
waves can be generated, is represented as:

in o =S8
sin «,, (21)
¢ V+ ,\/ﬁ
The velocity of currents, V] is defined by using the
Froude number:

Fr= 22)

Y
Jh

The reflected and transmitted velocity potentials of the
free long waves inj region can be written as:

(F))r= Erexp(2iApm,), (¥)r=Ey exp(2idx,) (23)
1
, 1

A= [M_K;y}z 24

J hj

To determine the values of the amplitudes of free long
waves, two matching conditions are required. The first con-
dition requires the continuity of the second-order free sur-
face displacement. The second condition requires the
continuity of the second-order flux (Liu et al., 1992).

3. Numerical examples

We discuss in this section numerical examples of free
long waves over a trapezoidally varying topography (two
rows, four rows). In Figure 2, the width, height, and
distance of the trapezoid are assumed to be B) = 0.5k,
Bo=h, H=0.5h, W= h. The symbols, |E|, |Ep|, |Er|,
|Er denote the magnitude of the amplitude of transmitted

— S— O— —p

Region 1 Region 2 Region 3 Region 4

Two rows

|Es}
—

Four rows

Region 4

Fig. 2. A schematic sketch of a trapezoidally varying topogra-
phy.

k ok

Fig. 3. The variation of the amplitudes of free long waves in
regions 1 and 3 (two rows, Fr=20, a;=30°)

free long wave components in Eq. (16). In all calculations,
b =1 is assumed in Eq. (12). Moreover, the small parame-
ter, B, is chosen to be 0.1, and the number of evanescent
modes employed in this study is fixed at »=2 (Cho and
Lee, 2000).

Figures 3 and 4 show, in the case of a;= 30°, the varia-
tion of amplitudes of free long wave components propagat-
ing over a trapezoidally varying topography which has two
rows with a value equal to k4 because the ambient cur-
rents are absent (Fr=0). The amplitudes of free long
waves propagating over the region with a constant water
depth change similarly. In Figure 3, |[Ey| and |E| show
similar variations of amplitudes. |Fr| and |Er,| likewise
show similar variations in Figure 4. When the conditions of
water depth and ambient currents, the critical incident angles
vary similarly in Figure 5. Thus, the conditions under which
free long waves can be resonated depend on the water
depth and ambient currents.

3.0

25 L T ;gn/

T4

Fig. 4. The variation of the amplitudes of free long waves in
regions 2 and 4 (two rows, Fr=0, a;=30°)



216 Yong-Sik Cho, Jin Woo Lee and Tae Hwa Jung

80
region 1,3 (Fr=0)
T == region 2,4 (Fr=0)
- e region 1,3 (Fr=0.1)
& 80 K, e region 2,4 (Fr=0.1)
5 ™.
3 L
30
0 1 I 1 I
1.0 2.0 3.0
L

Fig. 5. The critical incident angles.

The free long waves propagating over regions 2 and 4,
|[Er| and |Ep, are resonated a ki =1.52 (Figure 4).
However, |Ep| and |Ej| are resonated at ki =233
(Figure 3). As the critical incident angle, «.,, approaches
the incident angle (o; = 30°) at kihy = 1.52 (Figure 5), the
value of A;, A4 approaches zero and the trapped free long
waves are resonated at the point &/ = 1.52 and decrease
rapidly in regions 2 and 4. As the critical incident angle, a,,
approaches the incident angle (oz=30°) at the point of
kihy=2.78, however (Figure 5), the value of A, 43
approaches zero and the trapped free long waves are reso-
nated at the point ki/n =2.33, and decrease rapidly in
regions 2 and 3.

Figure 6 shows, in the case of a;=30°, the variation of
the amplitudes of the free long wave components propagat-
ing over region 4 without ambient currents (#r =0) and
with them (Fr = 0.1). In Figure 5, the value of ki4,, where
the critical incident angle becomes the incident angle

3.0 v
t i}
e — - /En/ Fr=20
25 A,=0 :: ETJ/ Fr=10.1
"
2.0 t "
"
I |
\h \ :|
15 K

Fig. 6. The variation of the amplitudes of free long waves with
ambient currents (two rows, a;=30°, region 4).
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0 10 20 30 40 50 60
QL (deg)

Fig. 7. The variation of the amplitudes of free long waves with
incident angles (two rows, ki = 1.0, region 4).

(ar=30°), is 1.52 when Fr=0 and 1.35 when Fr=0.1.
Thus, the value of A4 approaches zero and the trapped free
long waves are resonated at i/, = 1.52 when Fr =0 and at
ki = 1.35 when Fr=10.1. So, ambient currents influence
the conditions under which free long waves can be
resonated. That is, the resonance of the free long wave
components was shifted to smaller relative water depth
region when the current existed.

Figure 7 shows, when ks = 1.0, the variation of the
amplitudes of free long wave components propagating over
region 4 with incident angles o. The critical incident angle
becomes 42.6° in the case Fr=0 and 38° in the case
Fr=0.1 at the point of k14, = 1.0 in Figure 5. Thus, the
value of A4 approaches zero and the trapped free long
waves are resonated at the point a;=42.6° (Fr;=0) and
;=38 (Fr;=0.1) in Figure 7. Similar to Figure 6, the
ambient currents influence the conditions under which free
long waves can be resonated. For the smaller incident wave
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)

2.0

| AN S R B S S —

1.0

0.0

Fig. 8. The variation of the amplitudes of free long waves with
the distance of two trapezoids (two rows, a;=30°,
region 3).
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Fig. 9. The variation of the amplitudes of free long waves with
the distance of two trapezoids (two rows, o;=30,
region 4).

angle, the resonance of the long wave components was
occurred as the current flowed. When the incident angle
approaches the critical incident angle at which the free long
waves can be generated, the free long waves are trapped
and resonated.

Figures 8 and 9 show, under the same conditions of Fig-
ures 3 and 4, the variation of the amplitudes of free long
wave components propagating over regions 3 and 4
W=h, W=3h, W=5h)). As the distances of the two
trapezoids lengthens, the amplitudes of the free long wave
components propagating over regions 3 and 4 increases
slightly. However, the conditions of k4 under which the
free long waves are resonated do not change. Thus, the con-
ditions that free long waves can be resonated are not influ-
enced by the distance of two trapezoids.

Finally, Figure 10 shows the variation of the amplitudes
of free long wave components propagating over a trapezoi-
dally varying topography which has four rows with and

3.0

Fig. 10. The variation of the amplitudes of free long waves
with ambient currents (four rows, o= 30°, region 4).

without ambient currents. The trapped free long waves are
resonated at the points k4 = 1.52 (Fr =0) and £k = 1.35
(Fr=0.1), as seen in Figure 6.

4. Concluding remarks

The analytical solutions of the second-order long waves
generated by the diffraction of short wave groups after
abrupt changes in depth and current velocity are split into
locked and free long waves. The possibility of resonance
from trapped free long waves over a trapezoidally varying
topography is confirmed in this study. The conditions under
which the free long waves are resonated are related to the
critical incident angles determined by the depth of water
and the velocity of currents. As the incident angle of waves
approaches the critical incident angle, free long waves can
be trapped and resonated.
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